Eva MarÃ-a MartÃ-n del Valle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8859300/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insight into the influence of the polymerization time of polydopamine nanoparticles on their size, surface properties and nanomedical applications. Polymer Chemistry, 2022, 13, 235-244.	3.9	6
2	The viscoelastic behavior of the precursor hydrogels can modify aerogel properties. Journal of Supercritical Fluids, 2022, 184, 105563.	3.2	5
3	An Approach to Minimize Tumour Proliferation by Reducing the Formation of Components for Cell Membrane. Molecules, 2022, 27, 2735.	3.8	3
4	Supercritical carbon dioxide and biomedicine: Opening the doors towards biocompatibility. Chemical Engineering Journal, 2022, 444, 136615.	12.7	10
5	Biodegradable gellan gum hydrogels loaded with paclitaxel for HER2+ breast cancer local therapy. Carbohydrate Polymers, 2022, 294, 119732.	10.2	14
6	Production of fungistatic porous structures of cellulose acetate loaded with quercetin, using supercritical CO2. Journal of Supercritical Fluids, 2021, 169, 105129.	3.2	8
7	Antineoplastic behavior of polydopamine nanoparticles prepared in different water/alcohol media. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111506.	5.0	12
8	Steady and Oscillatory Shear Flow Behavior of Different Polysaccharides with Laponite®. Polymers, 2021, 13, 966.	4.5	5
9	Tailored-Made Polydopamine Nanoparticles to Induce Ferroptosis in Breast Cancer Cells in Combination with Chemotherapy. International Journal of Molecular Sciences, 2021, 22, 3161.	4.1	16
10	Nature-Inspired Nanoparticles as Paclitaxel Targeted Carrier for the Treatment of HER2-Positive Breast Cancer. Cancers, 2021, 13, 2526.	3.7	6
11	Tuning Alginate Microparticle Size via Atomization of Non-Newtonian Fluids. Materials, 2021, 14, 7601.	2.9	3
12	Preparation and characterization of cellulose acetate-Laponite® composite membranes produced by supercritical phase inversion. Journal of Supercritical Fluids, 2020, 155, 104651.	3.2	11
13	Role of rheological properties on physical chitosan aerogels obtained by supercritical drying. Carbohydrate Polymers, 2020, 233, 115850.	10.2	26
14	A comprehensive study on levan nanoparticles formation: Kinetics and self-assembly modeling. International Journal of Biological Macromolecules, 2020, 147, 1089-1098.	7.5	11
15	Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine. Nanomaterials, 2020, 10, 1674.	4.1	23
16	Preparation and characterization of a macroporous agarose monolith as a stationary phase in IMAC chromatography. Chemical Engineering Communications, 2019, 206, 268-277.	2.6	7
17	Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors. Nanomaterials, 2019, 9, 948.	4.1	12
18	Differences in levan nanoparticles depending on their synthesis route: Microbial vs cell-free systems. International Journal of Biological Macromolecules, 2019, 137, 62-68.	7.5	19

#	Article	IF	CITATIONS
19	Supercritical CO2 assisted formation of composite membranes containing an amphiphilic fructose-based polymer. Journal of CO2 Utilization, 2019, 34, 274-281.	6.8	15
20	Size Matters in the Cytotoxicity of Polydopamine Nanoparticles in Different Types of Tumors. Cancers, 2019, 11, 1679.	3.7	30
21	Biotechnological strategies to produce levan: Mass transfer and techno-economical evaluation. Chemical Engineering and Processing: Process Intensification, 2019, 141, 107529.	3.6	8
22	Levan-Capped Silver Nanoparticles for Bactericidal Formulations: Release and Activity Modelling. International Journal of Molecular Sciences, 2019, 20, 1502.	4.1	22
23	A Phenomenological Approach to Study Mechanical Properties of Polymeric Porous Structures Processed Using Supercritical CO2. Polymers, 2019, 11, 485.	4.5	11
24	Cytotoxicity of paramagnetic cations—Loaded polydopamine nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 167, 284-290.	5.0	15
25	Levan and levansucrases: Polymer, enzyme, micro-organisms and biomedical applications. Biocatalysis and Biotransformation, 2018, 36, 233-244.	2.0	32
26	Polydopamine nanoparticles kill cancer cells. RSC Advances, 2018, 8, 36201-36208.	3.6	41
27	Color Engineering of Silicon Nitride Surfaces to Characterize the Polydopamine Refractive Index. ChemPhysChem, 2018, 19, 3418-3424.	2.1	14
28	Kinetic and Mass Transfer Model for Separation of Protein Using Ceramic Monoliths as a Stationary Phase. Chemical Engineering Communications, 2017, 204, 750-760.	2.6	1
29	Molecular Approach to the Synergistic Effect on Astringency Elicited by Mixtures of Flavanols. Journal of Agricultural and Food Chemistry, 2017, 65, 6425-6433.	5.2	26
30	Development of a nanoparticle system based on a fructose polymer: Stability and drug release studies. Carbohydrate Polymers, 2017, 160, 26-33.	10.2	40
31	Effect of bacteria type and sucrose concentration on levan yield and its molecular weight. Microbial Cell Factories, 2017, 16, 91.	4.0	33
32	Understanding and optimizing the addition of phytohormones in the culture of microalgae for lipid production. Biotechnology Progress, 2016, 32, 1203-1211.	2.6	29
33	Synthesis of a new nanoparticle system based on electrostatic alginate-piperazine interactions. Polymers for Advanced Technologies, 2016, 27, 623-629.	3.2	8
34	Preparation and preliminary evaluation of alginate crosslinked microcapsules as potential drug delivery system (DDS) for human lung cancer therapy. Biomedical Physics and Engineering Express, 2016, 2, 035015.	1.2	18
35	Survey of supercritical fluid techniques for producing drug delivery systems for a potential use in cancer therapy. Reviews in Chemical Engineering, 2016, 32, 507-532.	4.4	11
36	Experimental and linear analysis for the instability of nonâ€ <scp>N</scp> ewtonian liquid jets issuing from a pressurized vibrating nozzle. AICHE Journal, 2015, 61, 2070-2078.	3.6	5

#	Article	IF	CITATIONS
37	CFD study of capillary jets under superimposed destabilizing conditions for microdroplet formation. Engineering Applications of Computational Fluid Mechanics, 2015, 9, 419-431.	3.1	4
38	ICOPE-15-1065 Research on Simulation and Experiment of Fin and Tube Type Heat Exchanger. The Proceedings of the International Conference on Power Engineering (ICOPE), 2015, 2015.12, _ICOPE-15ICOPE-15	0.0	0
39	Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea. Bioresource Technology, 2014, 173, 334-341.	9.6	35
40	Rheological characterization of commercial highly viscous alginate solutions in shear and extensional flows. Rheologica Acta, 2014, 53, 559-570.	2.4	35
41	Productivity Model for Separation of Proteins Using Ceramic Monoliths As a Stationary Phase. Industrial & Engineering Chemistry Research, 2014, 53, 15456-15466.	3.7	5
42	Modelling solubility of solid active principle ingredients in sc-CO2 with and without cosolvents: A comparative assessment of semiempirical models based on Chrastil's equation and its modifications. Journal of Supercritical Fluids, 2014, 93, 91-102.	3.2	15
43	An Empirical Analysis of the Solubility of Pharmaceuticals in Supercritical Carbon Dioxide Using Sublimation Enthalpies. Industrial & Engineering Chemistry Research, 2013, 52, 18447-18457.	3.7	7
44	CFD modeling and its validation of non-Newtonian fluid flow in a microparticle production process using fan jet nozzles. Powder Technology, 2013, 246, 617-624.	4.2	5
45	Microalgae Technology: A Patent Survey. International Journal of Chemical Reactor Engineering, 2013, 11, 733-763.	1.1	8
46	Experimental and Theoretical Analysis of the Operating Parameters for Precipitating Acetaminophen and Tretinoin with Solution Enhanced Dispersion by Supercritical Fluids. Industrial & Engineering Chemistry Research, 2013, 52, 8745-8754.	3.7	5
47	Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chemical Engineering and Processing: Process Intensification, 2012, 60, 9-25.	3.6	145
48	Estimation of sublimation enthalpies of solids constituted by aromatic and/or polycyclic aliphatic rings by using a group contribution method. AICHE Journal, 2012, 58, 2875-2884.	3.6	14
49	Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 2012, 63, 104-115.	3.6	82
50	Precipitation of tretinoin and acetaminophen with solution enhanced dispersion by supercritical fluids (SEDS). Role of phase equilibria to optimize particle diameter. Powder Technology, 2012, 217, 177-188.	4.2	38
51	Development of a technology to produce monodispersed microparticles based on the formation of drops from viscous non-Newtonian liquids sprayed through a fan jet nozzle. Chemical Engineering Journal, 2011, 174, 699-708.	12.7	12
52	On the use of semiempirical models of (solid+supercritical fluid) systems to determine solid sublimation properties. Journal of Chemical Thermodynamics, 2011, 43, 711-718.	2.0	13
53	Development of a new technique to generate microcapsules from the breakup of nonâ€Newtonian highly viscous fluid jets. AICHE Journal, 2011, 57, 3436-3447.	3.6	9
54	A comparison between semiempirical equations to predict the solubility of pharmaceutical compounds in supercritical carbon dioxide. Journal of Supercritical Fluids, 2010, 52, 161-174.	3.2	61

Eva MarÃa MartÃn del Valle

#	Article	IF	CITATIONS
55	Protein Imprinting by Means of Alginate-Based Polymer Microcapsules. Industrial & Engineering Chemistry Research, 2010, 49, 9811-9814.	3.7	24
56	Drug Delivery Technologies: The Way Forward in the New Decade. Industrial & Engineering Chemistry Research, 2009, 48, 2475-2486.	3.7	114
57	Immobilisation of Cells in Biocompatible Films to Cell Therapy. The Open Tissue Engineering and Regenerative Medicine Journal, 2009, 2, 14-19.	2.6	3
58	Immobilized Metalâ€lon Affinity Chromatography: Status and Trends. Separation and Purification Reviews, 2007, 36, 71-111.	5.5	121
59	Theoretical Model To Predict the Diffusion Coefficients of Enzymes on Adsorption Processes Based on Hard-Core Two-Yukawa Potential. Industrial & Engineering Chemistry Research, 2007, 46, 7410-7416.	3.7	3
60	Characterization of mass transport processes in IMAC chromatography by dynamics methods. Biochemical Engineering Journal, 2007, 35, 264-272.	3.6	7
61	Instability study of a swirling annular liquid sheet of polymer produced by air-blast atomization. Chemical Engineering Journal, 2007, 133, 69-77.	12.7	19
62	Immobilization of Mesenchymal Stem Cells and Monocytes in Biocompatible Microcapsules to Cell Therapy. Biotechnology Progress, 2007, 23, 940-945.	2.6	11
63	Development of a new technology for the production of microcapsules based in atomization processes. Chemical Engineering Journal, 2006, 117, 137-142.	12.7	66
64	Adsorption and mass transfer studies of Catalase in IMAC chromatography by dynamics methods. Process Biochemistry, 2006, 41, 142-151.	3.7	7
65	Modelling prediction of the microcapsule size of polyelectrolyte complexes produced by atomization. Chemical Engineering Journal, 2006, 121, 1-8.	12.7	16
66	The Encapsulation Art: Scale-up and Applications. , 2005, , 199-228.		0
67	Solubility of Gases in Polymeric Membranes. , 2005, , 41-61.		17
68	The Art and Science of Upscaling. , 2005, , 1-39.		3
69	Advances in Logic-Based Optimization Approaches to Process Integration and Supply Chain Management. , 2005, , 299-322.		5
70	Small Peptide Ligands for Affinity Separations of Biological Molecules. , 2005, , 63-83.		2
71	Bioprocess Scale-up: SMB as a Promising Technique for Industrial Separations Using IMAC. , 2005, , 85-102.		1
72	Opportunities in Catalytic Reaction Engineering. Examples of Heterogeneous Catalysis in Water Remediation and Preferential CO Oxidation. , 2005, , 103-124.		0

#	Article	IF	CITATIONS
73	Development of Nano-Structured Micro-Porous Materials and their Application in Bioprocess-Chemical Process Intensification and Tissue Engineering. , 2005, , 171-197.		4
74	Integration of Process Systems Engineering and Business Decision Making Tools: Financial Risk Management and Other Emerging Procedures. , 2005, , 323-377.		3
75	Fine-Structured Materials by Continuous Coating and Drying or Curing of Liquid Precursors. , 2005, , 229-266.		2
76	Langmuir-Blodgett Films: A Window to Nanotechnology. , 2005, , 267-297.		0
77	Design and Analysis of Homogeneous and Heterogeneous Photoreactors. , 2005, , 125-169.		3
78	Modeling of Monolith-Supported Affinity Chromatography. Biotechnology Progress, 2004, 20, 811-817.	2.6	7
79	Cyclodextrins and their uses: a review. Process Biochemistry, 2004, 39, 1033-1046.	3.7	2,792
80	Use of Ceramic Monoliths as StationaryPhase in Affinity Chromatography. Biotechnology Progress, 2003, 19, 921-927.	2.6	19
81	Effect of the Spacer Arm in Affinity Chromatography:Â Determination of Adsorption Characteristics and Flow Rate Effect. Industrial & Engineering Chemistry Research, 2002, 41, 2296-2304.	3.7	13
82	Specific and Nonspecific Adsorption in Affinity Chromatography. Part I. Preliminary and Equilibrium Studies. Industrial & Engineering Chemistry Research, 2001, 40, 369-376.	3.7	6
83	Specific and Nonspecific Adsorption in Affinity Chromatography. Part II. Kinetic and Mass Transfer Studies. Industrial & Engineering Chemistry Research, 2001, 40, 377-383.	3.7	8