Stephen John Livesley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8859296/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 2015, 134, 127-138.	7.5	749
2	The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. Journal of Environmental Quality, 2016, 45, 119-124.	2.0	491
3	Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant and Soil, 2008, 309, 43-76.	3.7	220
4	Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology, 2016, 124, 55-68.	2.8	218
5	Quantifying the thermal performance of green façades: A critical review. Ecological Engineering, 2014, 63, 102-113.	3.6	182
6	Increasing biodiversity in urban green spaces through simple vegetation interventions. Journal of Applied Ecology, 2017, 54, 1874-1883.	4.0	180
7	The conservation value of urban green space habitats for Australian native bee communities. Biological Conservation, 2015, 187, 240-248.	4.1	163
8	Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Building and Environment, 2013, 69, 91-100.	6.9	152
9	Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sensing of Environment, 2016, 186, 637-651.	11.0	136
10	Rainfall interception and stem flow by eucalypt street trees – The impacts of canopy density and bark type. Urban Forestry and Urban Greening, 2014, 13, 192-197.	5.3	131
11	Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuarine, Coastal and Shelf Science, 2012, 97, 19-27.	2.1	121
12	Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landscape and Urban Planning, 2017, 157, 502-511.	7.5	117
13	Approaches to urban vegetation management and the impacts on urban bird and bat assemblages. Landscape and Urban Planning, 2016, 153, 28-39.	7.5	109
14	The seven lamps of planning for biodiversity in the city. Cities, 2018, 83, 44-53.	5.6	92
15	Soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide in urban garden systems: impact of irrigation, fertiliser and mulch. Urban Ecosystems, 2010, 13, 273-293.	2.4	88
16	Fire in Australian savannas: from leaf to landscape. Global Change Biology, 2015, 21, 62-81.	9.5	88
17	Soil–atmosphere exchange of greenhouse gases in a <i>Eucalyptus marginata</i> woodland, a cloverâ€grass pasture, and <i>Pinus radiata</i> and <i>Eucalyptus globulus</i> plantations. Global Change Biology, 2009, 15, 425-440.	9.5	83
18	Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban Forestry and Urban Greening, 2016, 20, 160-171.	5.3	83

#	Article	IF	CITATIONS
19	Variation in Vegetation Structure and Composition across Urban Green Space Types. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	79
20	Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth. Urban Forestry and Urban Greening, 2016, 18, 1-8.	5.3	78
21	Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in Summer. Journal of Environmental Quality, 2016, 45, 167-174.	2.0	77
22	Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia. Agricultural and Forest Meteorology, 2011, 151, 1440-1452.	4.8	75
23	Estimation of leaf area index in eucalypt forest with vertical foliage, using cover and fullframe fisheye photography. Forest Ecology and Management, 2007, 242, 756-763.	3.2	70
24	The influence of climate and drought on urban tree growth in southeast Australia and the implications for future growth under climate change. Landscape and Urban Planning, 2017, 167, 275-287.	7.5	68
25	Assessing productivity and carbon sequestration capacity of Eucalyptus globulus plantations using the process model Forest-DNDC: Calibration and validation. Ecological Modelling, 2006, 192, 83-94.	2.5	61
26	Title is missing!. Plant and Soil, 2000, 227, 149-161.	3.7	60
27	A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecological Modelling, 2009, 220, 734-746.	2.5	60
28	Quercitol and osmotic adaptation of fieldâ€grown <i>Eucalyptus</i> under seasonal drought stress. Plant, Cell and Environment, 2008, 31, 915-924.	5.7	59
29	Influence of water potential on nitrification and structure of nitrifying bacterial communities in semiarid soils. Applied Soil Ecology, 2008, 40, 189-194.	4.3	58
30	Soil Carbon and Carbon/Nitrogen Ratio Change under Tree Canopy, Tall Grass, and Turf Grass Areas of Urban Green Space. Journal of Environmental Quality, 2016, 45, 215-223.	2.0	58
31	Urban forest governance and decision-making: A systematic review and synthesis of the perspectives of municipal managers. Landscape and Urban Planning, 2019, 189, 166-180.	7.5	58
32	Quantifying uncertainty from large-scale model predictions of forest carbon dynamics. Global Change Biology, 2006, 12, 1421-1434.	9.5	57
33	Reduced throughfall decreases autotrophic respiration, but not heterotrophic respiration in a dry temperate broadleaved evergreen forest. Agricultural and Forest Meteorology, 2015, 200, 66-77.	4.8	54
34	Conserving herbivorous and predatory insects in urban green spaces. Scientific Reports, 2017, 7, 40970.	3.3	54
35	Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet–dry tropics of northern Australia. Agricultural and Forest Meteorology, 2013, 182-183, 239-247.	4.8	53
36	SPECIAL—Savanna Patterns of Energy and Carbon Integrated across the Landscape. Bulletin of the American Meteorological Society, 2011, 92, 1467-1485.	3.3	52

#	Article	IF	CITATIONS
37	Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Science of the Total Environment, 2020, 706, 135736.	8.0	52
38	Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems. Journal of Environmental Management, 2015, 159, 1-10.	7.8	51
39	Soil–atmosphere greenhouse gas exchange in a cool, temperate Eucalyptus delegatensis forest in south-eastern Australia. Agricultural and Forest Meteorology, 2009, 149, 393-406.	4.8	50
40	Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences, 2012, 9, 423-437.	3.3	48
41	Competition in tree row agroforestry systems. 3. Soil water distribution and dynamics. Plant and Soil, 2004, 264, 129-139.	3.7	47
42	A global comparison of the climatic niches of urban and native tree populations. Global Ecology and Biogeography, 2018, 27, 629-637.	5.8	44
43	Decision-making of municipal urban forest managers through the lens of governance. Environmental Science and Policy, 2020, 104, 136-147.	4.9	44
44	Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater. Water Research, 2015, 83, 195-204.	11.3	41
45	Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landscape and Urban Planning, 2018, 178, 122-129.	7.5	41
46	Variation in leaf area density drives the rainfall storage capacity of individual urban tree species. Hydrological Processes, 2018, 32, 3729-3740.	2.6	41
47	Habitat Complexity Enhances Comminution and Decomposition Processes in Urban Ecosystems. Ecosystems, 2016, 19, 927-941.	3.4	36
48	Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils. Journal of Environmental Management, 2018, 227, 365-374.	7.8	35
49	Right tree, right place, right time: A visual-functional design approach to select and place trees for optimal shade benefit to commuting pedestrians. Sustainable Cities and Society, 2020, 52, 101816.	10.4	35
50	Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequence in a eucalypt forest landscape. Global Change Biology, 2015, 21, 4250-4264.	9.5	34
51	London Plane trees (Platanus x acerifolia) before, during and after a heatwave: Losing leaves means less cooling benefit. Urban Forestry and Urban Greening, 2020, 54, 126746.	5.3	34
52	Trace gas flux and the influence of short-term soil water and temperature dynamics in Australian sheep grazed pastures of differing productivity. Plant and Soil, 2008, 309, 89-103.	3.7	33
53	The relationships between termite mound CH ₄ /CO ₂ emissions and internal concentration ratios are species specific. Biogeosciences, 2013, 10, 2229-2240.	3.3	33
54	Tree pits to help mitigate runoff in dense urban areas. Journal of Hydrology, 2018, 565, 400-410.	5.4	33

STEPHEN JOHN LIVESLEY

#	Article	IF	CITATIONS
55	Street tree stormwater control measures can reduce runoff but may not benefit established trees. Landscape and Urban Planning, 2019, 182, 144-155.	7.5	33
56	Soil Methane Uptake Increases under Continuous Throughfall Reduction in a Temperate Evergreen, Broadleaved Eucalypt Forest. Ecosystems, 2017, 20, 368-379.	3.4	31
57	The Importance of Termites to the CH4 Balance of a Tropical Savanna Woodland of Northern Australia. Ecosystems, 2011, 14, 698-709.	3.4	30
58	Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems. Science of the Total Environment, 2013, 465, 64-71.	8.0	30
59	Diurnal and seasonal variations in CH4 flux from termite mounds in tropical savannas of the Northern Territory, Australia. Agricultural and Forest Meteorology, 2011, 151, 1471-1479.	4.8	29
60	The Biodiversity of Urban and Peri-Urban Forests and the Diverse Ecosystem Services They Provide as Socio-Ecological Systems. Forests, 2016, 7, 291.	2.1	29
61	Patterns of tree removal and canopy change on public and private land in the City of Melbourne. Sustainable Cities and Society, 2020, 56, 102096.	10.4	28
62	High potential, but low actual, glycine uptake of dominant plant species in three Australian land-use types with intermediate N availability. Plant and Soil, 2009, 325, 109-121.	3.7	27
63	Tree water-use strategies to improve stormwater retention performance of biofiltration systems. Water Research, 2018, 144, 285-295.	11.3	27
64	Private tree removal, public loss: Valuing and enforcing existing tree protection mechanisms is the key to retaining urban trees on private land. Landscape and Urban Planning, 2020, 203, 103899.	7.5	27
65	Biosolid stockpiles are a significant point source for greenhouse gas emissions. Journal of Environmental Management, 2014, 143, 34-43.	7.8	26
66	Random point sampling to detect gain and loss in tree canopy cover in response to urban densification. Urban Forestry and Urban Greening, 2017, 24, 26-34.	5.3	24
67	Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants. PeerJ, 2015, 3, e1356.	2.0	23
68	Termite mound emissions of CH4 and CO2 are primarily determined by seasonal changes in termite biomass and behaviour. Oecologia, 2011, 167, 525-534.	2.0	22
69	Soil methane oxidation in both dry and wet temperate eucalypt forests shows a near-identical relationship with soil air-filled porosity. Biogeosciences, 2017, 14, 467-479.	3.3	22
70	Transpiration by established trees could increase the efficiency of stormwater control measures. Water Research, 2020, 173, 115597.	11.3	22
71	International approaches to protecting and retaining trees on private urban land. Journal of Environmental Management, 2021, 285, 112081.	7.8	22
72	Net ecosystem carbon exchange of a dry temperate eucalypt forest. Biogeosciences, 2017, 14, 3781-3800.	3.3	19

5

STEPHEN JOHN LIVESLEY

#	Article	IF	CITATIONS
73	Estimating the cooling potential of irrigating green spaces in 100 global cities with arid, temperate or continental climates. Sustainable Cities and Society, 2021, 71, 102974.	10.4	19
74	Vulnerability of native savanna trees and exotic <i>Khaya senegalensis</i> to seasonal drought. Tree Physiology, 2015, 35, 783-791.	3.1	18
75	Title is missing!. Plant and Soil, 2002, 247, 177-187.	3.7	17
76	Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia. Biogeosciences, 2016, 13, 6285-6303.	3.3	16
77	Tree water use strategies and soil type determine growth responses to biochar and compost organic amendments. Soil and Tillage Research, 2019, 192, 12-21.	5.6	16
78	Relating the climate envelopes of urban tree species to their drought and thermal tolerance. Science of the Total Environment, 2021, 753, 142012.	8.0	15
79	Soil Water Nitrate and Ammonium Dynamics under a Sewage Effluent–Irrigated Eucalypt Plantation. Journal of Environmental Quality, 2007, 36, 1883-1894.	2.0	14
80	Contrasting effects of urban habitat complexity on metabolic functional diversity and composition of litter and soil bacterial communities. Urban Ecosystems, 2017, 20, 595-607.	2.4	14
81	Repeated fuel reduction burns have little long-term impact on soil greenhouse gas exchange in a dry sclerophyll eucalypt forest. Agricultural and Forest Meteorology, 2015, 201, 17-25.	4.8	13
82	Urban Trees as Green Infrastructure for Stormwater Mitigation and Use. Ecological Studies, 2020, , 397-432.	1.2	13
83	Water Smart Cities Increase Irrigation to Provide Cool Refuge in a Climate Crisis. Earth's Future, 2021, 9, e2020EF001806.	6.3	12
84	Terrestrial Laser Scanning to Predict Canopy Area Metrics, Water Storage Capacity, and Throughfall Redistribution in Small Trees. Remote Sensing, 2018, 10, 1958.	4.0	9
85	Differences in carbon density and soil CH4/N2O flux among remnant and agro-ecosystems established since European settlement in the Mornington Peninsula, Australia. Science of the Total Environment, 2013, 465, 17-25.	8.0	7
86	Storage management influences greenhouse gas emissions from biosolids. Journal of Environmental Management, 2015, 151, 361-368.	7.8	7
87	The overlooked carbon loss due to decayed wood in urban trees. Urban Forestry and Urban Greening, 2018, 29, 142-153.	5.3	7
88	Greywater irrigation can support climbing plant growth on building green façades. Urban Forestry and Urban Greening, 2021, 62, 127119.	5.3	7
89	Testing the accuracy of resistance drilling to assess tree growth rate and the relationship to past climatic conditions. Urban Forestry and Urban Greening, 2018, 36, 1-12.	5.3	6
90	Selecting tree species with high transpiration and drought avoidance to optimise runoff reduction in passive irrigation systems. Science of the Total Environment, 2022, 812, 151466.	8.0	6

#	Article	IF	CITATIONS
91	Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants. Land, 2021, 10, 1281.	2.9	4
92	Supporting Growth and Transpiration of Newly Planted Street Trees With Passive Irrigation Systems. Water Resources Research, 2022, 58, .	4.2	4
93	Standing volume yield, canopy structure and allometric relationships of dominant urban trees in Melbourne, Australia. Urban Forestry and Urban Greening, 2019, 43, 126363.	5.3	2
94	Nitrous oxide and methane flux in Australian and New Zealand landscapes: measurements, modeling and mitigation. Plant and Soil, 2008, 309, 1-4.	3.7	1