
Kate Gillian Storey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8859251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Opposing FGF and Retinoid Pathways Control Ventral Neural Pattern, Neuronal Differentiation, and Segmentation during Body Axis Extension. Neuron, 2003, 40, 65-79.	3.8	532
2	The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell, 1993, 74, 645-659.	13.5	296
3	Neuromesodermal progenitors and the making of the spinal cord. Development (Cambridge), 2015, 142, 2864-2875.	1.2	282
4	A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development (Cambridge), 2007, 134, 2889-2894.	1.2	260
5	Stem cells, signals and vertebrate body axis extension. Development (Cambridge), 2009, 136, 1591-1604.	1.2	259
6	Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. BioEssays, 2004, 26, 857-869.	1.2	247
7	A robust system for RNA interference in the chicken using a modified microRNA operon. Developmental Biology, 2006, 294, 554-563.	0.9	192
8	Stem cells, signals and vertebrate body axis extension. Development (Cambridge), 2009, 136, 2133-2133.	1.2	191
9	Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the <i>DUSP6</i> / <i>MKP3</i> gene promoter. Biochemical Journal, 2008, 412, 287-298.	1.7	167
10	Negative Feedback Regulation of FGF Signaling Levels by Pyst1/MKP3 in Chick Embryos. Current Biology, 2003, 13, 1009-1018.	1.8	162
11	Loss of FGF-Dependent Mesoderm Identity and Rise of Endogenous Retinoid Signalling Determine Cessation of Body Axis Elongation. PLoS Biology, 2012, 10, e1001415.	2.6	155
12	Apical Abscission Alters Cell Polarity and Dismantles the Primary Cilium During Neurogenesis. Science, 2014, 343, 200-204.	6.0	154
13	A spatial and temporal map of FGF/Erk1/2 activity and response repertoires in the early chick embryo. Developmental Biology, 2007, 302, 536-552.	0.9	133
14	A region of the vertebrate neural plate in which neighbouring cells can adopt neural or epidermal fates. Current Biology, 2000, 10, 869-872.	1.8	125
15	Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development (Cambridge), 2010, 137, 881-890.	1.2	116
16	Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development (Cambridge), 2002, 129, 1681-1691.	1.2	115
17	Wnt signals provide a timing mechanism for the FGF-retinoid differentiation switch during vertebrate body axis extension. Development (Cambridge), 2007, 134, 2125-2135.	1.2	113
18	Specification and maintenance of the spinal cord stem zone. Development (Cambridge), 2005, 132, 4273-4283.	1.2	103

KATE GILLIAN STOREY

#	Article	IF	CITATIONS
19	Mitotic spindle orientation distinguishes stem cell and terminal modes of neuron production in the early spinal cord. Development (Cambridge), 2007, 134, 1943-1954.	1.2	99
20	FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk. Journal of Cell Biology, 2011, 194, 489-503.	2.3	89
21	FGF-dependent Notch signaling maintains the spinal cord stem zone. Genes and Development, 2005, 19, 2877-2887.	2.7	85
22	Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Developmental Biology, 2010, 338, 215-225.	0.9	61
23	Markers in vertebrate neurogenesis. Nature Reviews Neuroscience, 2001, 2, 835-839.	4.9	58
24	Mitotic spindle orientation can direct cell fate and bias Notch activity in chick neural tube. EMBO Reports, 2012, 13, 448-454.	2.0	56
25	TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development. Biochemical Journal, 2011, 437, 157-167.	1.7	55
26	Major transcriptome re-organisation and abrupt changes in signalling, cell cycle and chromatin regulation at neural differentiation <i>in vivo</i> . Development (Cambridge), 2014, 141, 3266-3276.	1.2	54
27	FGF Signalling Regulates Chromatin Organisation during Neural Differentiation via Mechanisms that Can Be Uncoupled from Transcription. PLoS Genetics, 2013, 9, e1003614.	1.5	50
28	Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination. ELife, 2017, 6, .	2.8	50
29	Neural differentiation, selection and transcriptomic profiling of human neuromesodermal progenitors-like cells in vitro. Development (Cambridge), 2018, 145, .	1.2	48
30	Negative feedback predominates over cross-regulation to control ERK MAPK activity in response to FGF signalling in embryos. FEBS Letters, 2006, 580, 4242-4245.	1.3	44
31	In vivo role of the phosphate groove of PDK1 defined by knockin mutation. Journal of Cell Science, 2005, 118, 5023-5034.	1.2	42
32	A novel reporter of notch signalling indicates regulated and random notch activation during vertebrate neurogenesis. BMC Biology, 2011, 9, 58.	1.7	39
33	Lineage tracing axial progenitors using Nkx1-2CreERT2 mice defines their trunk and tail contributions. Development (Cambridge), 2018, 145, .	1.2	38
34	Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development (Cambridge), 2002, 129, 1681-91.	1.2	38
35	c-Irx2 expression reveals an early subdivision of the neural plate in the chick embryo. Mechanisms of Development, 1999, 87, 203-206.	1.7	37
36	Improved Annotation of 3′ Untranslated Regions and Complex Loci by Combination of Strand-Specific Direct RNA Sequencing, RNA-Seq and ESTs. PLoS ONE, 2014, 9, e94270.	1.1	27

KATE GILLIAN STOREY

#	Article	IF	CITATIONS
37	Wnt regulates amino acid transporter <i>Slc7a5</i> and so constrains the integrated stress response in mouse embryos. EMBO Reports, 2020, 21, e48469.	2.0	26
38	Brain or Brawn. Cell, 2003, 115, 510-512.	13.5	19
39	High-resolution Live Imaging of Cell Behavior in the Developing Neuroepithelium. Journal of Visualized Experiments, 2012, , .	0.2	15
40	An effective assay for high cellular resolution time-lapse imaging of sensory placode formation and morphogenesis. BMC Neuroscience, 2011, 12, 37.	0.8	12
41	Crumbs2 mediates ventricular layer remodelling to form theÂspinal cord central canal. PLoS Biology, 2020, 18, e3000470.	2.6	12
42	Multiple steps characterise ventricular layer attrition to form the ependymal cell lining of the adult mouse spinal cord central canal. Journal of Anatomy, 2020, 236, 334-350.	0.9	11
43	Cell biological mechanisms regulating chick neurogenesis. International Journal of Developmental Biology, 2018, 62, 167-175.	0.3	9
44	An emerging molecular mechanism for the neural vs mesodermal cell fate decision. Cell Research, 2011, 21, 708-710.	5.7	7
45	Human spinal cord in vitro differentiation pace is initially maintained in heterologous embryonic environments. ELife, 2022, 11, .	2.8	7
46	A lateral protrusion latticework connects neuroepithelial cells and is regulated during neurogenesis. Journal of Cell Science, 2022, , .	1.2	6
47	Mitotic spindle orientation can direct cell fate and bias Notch activity in chick neural tube. EMBO Reports, 2012, 13, 1030-1030.	2.0	5
48	Myc activity is required for maintenance of the neuromesodermal progenitor signalling network and for segmentation clock gene oscillations in mouse. Development (Cambridge), 2018, 145, .	1.2	5
49	Mapping body-building potential. ELife, 2016, 5, e14830.	2.8	4
50	The future of conferences. Development (Cambridge), 2022, 149, .	1.2	4
51	Expression of Î ³ -adducin is associated with regions of morphogenetic cell movement in the chick embryo. Mechanisms of Development, 2002, 119, S191-S195.	1.7	3
52	Apical abscission, a novel cell biological mechanism regulating neurogenesis. Neurogenesis (Austin,) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf

53	A feast of neural stem cells. Development (Cambridge), 2006, 133, 4798-4800.	1.2	Ο
54	Layers of complexity: diverse molecular mechanisms transforming germ layers into organisms. Current Opinion in Genetics and Development, 2012, 22, 305-307.	1.5	0

KATE GILLIAN STOREY

#	Article	IF	CITATIONS
55	A new Editor-in-Chief for Development. Development (Cambridge), 2018, 145, .	1.2	0
56	Neural-mesodermal progenitor interactions in pattern formation: an introduction to the collection. F1000Research, 2014, 3, 275.	0.8	0
57	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
58	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
59	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
60	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
61	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
62	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0