
Leonardo L Gollo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8859159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the intersection between data quality and dynamical modelling of large-scale fMRI signals. Neurolmage, 2022, 256, 119051.	2.1	11
2	Single-neuron dynamical effects of dendritic pruning implicated in aging and neurodegeneration: towards a measure of neuronal reserve. Scientific Reports, 2021, 11, 1309.	1.6	8
3	Flexible brain dynamics underpins complex behaviours as observed in Parkinson's disease. Scientific Reports, 2021, 11, 4051.	1.6	48
4	Stochastic synchronization of dynamics on the human connectome. Neurolmage, 2021, 229, 117738.	2.1	19
5	Spatially resolved dendritic integration: towards a functional classification of neurons. PeerJ, 2020, 8, e10250.	0.9	5
6	Hierarchical and Nonlinear Dynamics in Prefrontal Cortex Regulate the Precision of Perceptual Beliefs. Frontiers in Neural Circuits, 2019, 13, 27.	1.4	0
7	Metastable brain waves. Nature Communications, 2019, 10, 1056.	5.8	170
8	Exploring atypical timescales in the brain. ELife, 2019, 8, .	2.8	13
9	Estimating the impact of structural directionality: How reliable are undirected connectomes?. Network Neuroscience, 2018, 2, 259-284.	1.4	33
10	Network structure of the human musculoskeletal system shapes neural interactions on multiple time scales. Science Advances, 2018, 4, eaat0497.	4.7	111
11	Fragility and volatility of structural hubs in the human connectome. Nature Neuroscience, 2018, 21, 1107-1116.	7.1	93
12	Mapping how local perturbations influence systems-level brain dynamics. Neurolmage, 2017, 160, 97-112.	2.1	117
13	Neural decoding of visual stimuli varies with fluctuations in global network efficiency. Human Brain Mapping, 2017, 38, 3069-3080.	1.9	17
14	Coexistence of critical sensitivity and subcritical specificity can yield optimal population coding. Journal of the Royal Society Interface, 2017, 14, 20170207.	1.5	24
15	Criticality in the brain: A synthesis of neurobiology, models and cognition. Progress in Neurobiology, 2017, 158, 132-152.	2.8	377
16	Functional connectivity analysis of multiplex muscle network across frequencies. , 2017, 2017, 1567-1570.		5
17	A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields. ELife, 2016, 5, .	2.8	93
18	Connectome sensitivity or specificity: which is more important?. Neurolmage, 2016, 142, 407-420.	2.1	262

LEONARDO L GOLLO

#	Article	IF	CITATIONS
19	Inhibitory loop robustly induces anticipated synchronization in neuronal microcircuits. Physical Review E, 2016, 94, 042411.	0.8	13
20	Stimulus-dependent synchronization in delayed-coupled neuronal networks. Scientific Reports, 2016, 6, 23471.	1.6	40
21	Diversity improves performance in excitable networks. PeerJ, 2016, 4, e1912.	0.9	17
22	Are rich club regions masters or slaves of brain network dynamics?. BMC Neuroscience, 2015, 16, .	0.8	0
23	Optimal signal detection with neuronal diversity: balancing the gullible and the prudent neurons. BMC Neuroscience, 2015, 16, .	0.8	0
24	Reconstructing the directionality of coupling between cortical populations with negative phase lag. BMC Neuroscience, 2015, 16, .	0.8	0
25	Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140165.	1.8	159
26	Time-resolved resting-state brain networks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10341-10346.	3.3	716
27	Mechanisms of Zero-Lag Synchronization in Cortical Motifs. PLoS Computational Biology, 2014, 10, e1003548.	1.5	123
28	The frustrated brain: from dynamics on motifs to communities and networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130532.	1.8	72
29	Modeling positive Granger causality and negative phase lag between cortical areas. NeuroImage, 2014, 99, 411-418.	2.1	53
30	Zero-lag synchronization in cortical motifs. BMC Neuroscience, 2013, 14, .	0.8	2
31	Anticipated synchronization in neuronal motifs. BMC Neuroscience, 2013, 14, .	0.8	4
32	Anticipated synchronization in neuronal network motifs. , 2013, , .		2
33	Single-neuron criticality optimizes analog dendritic computation. Scientific Reports, 2013, 3, 3222.	1.6	30
34	Statistical physics approach to dendritic computation: The excitable-wave mean-field approximation. Physical Review E, 2012, 85, 011911.	0.8	20
35	Signal integration enhances the dynamic range in neuronal systems. Physical Review E, 2012, 85, 040902.	0.8	20
36	Theta Band Zero-Lag Long-Range Cortical Synchronization via Hippocampal Dynamical Relaying. PLoS ONE, 2011, 6, e17756.	1.1	37

LEONARDO L GOLLO

#	Article	IF	Citations
37	Zero-lag long-range synchronization via hippocampal dynamical relaying. BMC Neuroscience, 2010, 11, .	0.8	1
38	Dynamic control for synchronization of separated cortical areas through thalamic relay. NeuroImage, 2010, 52, 947-955.	2.1	53
39	Active Dendrites Enhance Neuronal Dynamic Range. PLoS Computational Biology, 2009, 5, e1000402.	1.5	53
40	A mechanism for achieving zero-lag long-range synchronization of neural activity. BMC Neuroscience, 2009, 10, .	0.8	1
41	Far in Space and Yet in Synchrony: Neuronal Mechanisms for Zero-Lag Long-Range Synchronization. , 2009, , 143-167.		0
42	Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17157-17162.	3.3	310