Balamurugan Jayaraman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8858988/publications.pdf

Version: 2024-02-01

140 papers 10,016 citations

15466 65 h-index 93 g-index

140 all docs 140 docs citations

140 times ranked

9185 citing authors

#	Article	IF	Citations
1	Ni-nanoclusters hybridized 1T–Mn–VTe2 mesoporous nanosheets for ultra-low potential water splitting. Applied Catalysis B: Environmental, 2022, 301, 120780.	10.8	32
2	Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li-S batteries. Chemical Engineering Journal, 2022, 427, 131774.	6.6	38
3	Recent engineering advances in nanocatalysts for NH3-to-H2 conversion technologies. Nano Energy, 2022, 94, 106929.	8.2	15
4	Transition metal nanoparticles as electrocatalysts for ORR, OER, and HER., 2022, , 49-83.		0
5	Uniformly Controlled Treble Boundary Using Enriched Adsorption Sites and Accelerated Catalyst Cathode for Robust Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	87
6	Modulating heterointerfaces of tungsten incorporated CoSe/Co ₃ O ₄ as a highly efficient electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2022, 10, 3782-3792.	5 . 2	35
7	Freestanding Binder-Free Electrodes with Nanodisk-Needle-like MnCuCo-LTH and Mn ₁ Fe ₂ S ₂ Porous Microthorns for High-Performance Quasi-Solid-State Supercapacitors. ACS Applied Materials & Description (2022), 14, 12523-12537.	4.0	10
8	Single (Ni, Fe) atoms and ultrasmall Core@shell Ni@Fe nanostructures Dual-implanted CNTs-Graphene nanonetworks for robust Zn- and Al-Air batteries. Chemical Engineering Journal, 2022, 440, 135781.	6.6	24
9	Hybridized bimetallic phosphides of Ni–Mo, Co–Mo, and Co–Ni in a single ultrathin-3D-nanosheets for efficient HER and OER in alkaline media. Composites Part B: Engineering, 2022, 239, 109992.	5. 9	96
10	Single platinum atoms implanted 2D lateral anion-intercalated metal hydroxides of Ni2(OH)2(NO3)2 as efficient catalyst for high-yield water splitting. Applied Catalysis B: Environmental, 2022, 317, 121684.	10.8	18
11	Recent progress on single atom/sub-nano electrocatalysts for energy applications. Progress in Materials Science, 2021, 115, 100711.	16.0	27
12	OD to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chemical Engineering Journal, 2021, 403, 126352.	6.6	755
13	Worm-like gold nanowires assembled carbon nanofibers-CVD graphene hybrid as sensitive and selective sensor for nitrite detection. Journal of Colloid and Interface Science, 2021, 583, 425-434.	5.0	36
14	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733.	16.0	97
15	Core cation tuned MxCo3-xS4@NiMoS4 [MÂ=ÂNi, Mn, zn] core–shell nanomaterials as advanced all solid-state asymmetric supercapacitor electrodes. Chemical Engineering Journal, 2021, 405, 127046.	6.6	39
16	Fabrication of hierarchical Zn–Ni–Co–S nanowire arrays and graphitic carbon nitride/graphene for solid-state asymmetric supercapacitors. Applied Surface Science, 2021, 542, 148564.	3.1	35
17	Pragmatically designed tetragonal copper ferrite super-architectures as advanced multifunctional electrodes for solid-state supercapacitors and overall water splitting. Chemical Engineering Journal, 2021, 415, 127779.	6.6	16
18	Nanostructured CeO2/NiV–LDH composite for energy storage in asymmetric supercapacitor and as methanol oxidation electrocatalyst. Chemical Engineering Journal, 2021, 417, 128019.	6.6	72

#	Article	IF	Citations
19	All-solid-state asymmetric supercapacitor with MWCNT-based hollow NiCo2O4 positive electrode and porous Cu2WS4 negative electrode. Chemical Engineering Journal, 2021, 415, 128188.	6.6	27
20	Development of hierarchically structured nanosheet arrays of CuMnO2-MnxOy@graphene foam as a nanohybrid electrode material for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2021, 858, 158343.	2.8	21
21	Polymer nanocomposites for energy-related applications. , 2021, , 215-248.		O
22	Novel cobalt-doped molybdenum oxynitride quantum dot@N-doped carbon nanosheets with abundant oxygen vacancies for long-life rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 9092-9104.	5.2	41
23	Metal organic framework-derived cobalt telluride-carbon porous structured composites for high-performance supercapacitor. Composites Part B: Engineering, 2021, 211, 108624.	5.9	45
24	Strongly stabilized integrated bimetallic oxide of Fe2O3-MoO3 Nano-crystal entrapped N-doped graphene as a superior oxygen reduction reaction electrocatalyst. Chemical Engineering Journal, 2021, 410, 128358.	6.6	47
25	Fe and P Doped 1T-Phase Enriched WS23D-Dendritic Nanostructures for Efficient Overall Water Splitting. Applied Catalysis B: Environmental, 2021, 286, 119897.	10.8	88
26	3D nickel molybdenum oxyselenide (Ni1-xMoxOSe) nanoarchitectures as advanced multifunctional catalyst for Zn-air batteries and water splitting. Applied Catalysis B: Environmental, 2021, 286, 119909.	10.8	72
27	Carbon Nanofibers as Potential Catalyst Support for Fuel Cell Cathodes: A Review. Energy & En	2.5	37
28	Novel core-shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. Nano Energy, 2021, 85, 105987.	8.2	89
29	Bifunctional Catalyst Derived from Sulfur-Doped VMoO _{<i>x</i>>Nanolayer Shelled Co Nanosheets for Efficient Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42944-42956.}	4.0	26
30	Cobalt-doped cerium oxide nanocrystals shelled 1D SnO2 structures for highly sensitive and selective xanthine detection in biofluids. Journal of Colloid and Interface Science, 2021, 600, 299-309.	5.0	11
31	Activated CuNi@Ni Core@shell structures via oxygen and nitrogen dual coordination assembled on 3D CNTs-graphene hybrid for high-performance water splitting. Applied Catalysis B: Environmental, 2021, 294, 120263.	10.8	44
32	Efficient energy storage performance of in situ grown Co3V2O8-RGO composite nanostructure for high performance asymmetric Co3V2O8-RGO//RGO supercapacitors and consequence of magnetic field induced enhanced capacity. Composites Part B: Engineering, 2021, 227, 109384.	5.9	17
33	Hierarchical 3D structured nanoporous Co ₉ S ₈ @Ni _{<i>x</i>} :Mo _{<i>y</i>} –Se core–shell nanowire array electrodes for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A. 2021, 9, 27503-27517.	5.2	30
34	Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor. Chemical Engineering Journal, 2020, 380, 122543.	6.6	157
35	Advanced Cu0.5Co0.5Se2 nanosheets and MXene electrodes for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2020, 385, 123455.	6.6	55
36	Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chemical Engineering Journal, 2020, 384, 123357.	6.6	133

#	Article	IF	CITATIONS
37	Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets. Nano Energy, 2020, 69, 104432.	8.2	74
38	ZnSâ€"Ni ₇ S ₆ Nanosheet Arrays Wrapped with Nanopetals of Ni(OH) ₂ as a Novel Coreâ€"Shell Electrode Material for Asymmetric Supercapacitors with High Energy Density and Cycling Stability Performance. ACS Applied Materials & Density and Cycling Stability Performance. ACS Applied Materials & Density and Cycling Stability Performance. ACS Applied Materials & Density and Cycling Stability Performance. ACS Applied Materials & Density and Cycling Stability Performance. ACS Applied Materials & Density and Cycling Stability Performance. ACS Applied Materials & Density and Cycling Stability Performance. ACS Applied Materials & Density and Cycling Stability Performance. ACS Applied Materials & Density Acceptable & Density Acceptable & Density Acceptable & Density Acceptable	4.0	49
39	Hierarchical CoS@MoS2 core-shell nanowire arrays as free-standing electrodes for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 825, 154085.	2.8	19
40	Effects of the addition of boric acid on the physical properties of MXene/polyvinyl alcohol (PVA) nanocomposite. Composites Part B: Engineering, 2020, 199, 108205.	5.9	69
41	Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc–air batteries. Applied Catalysis B: Environmental, 2020, 279, 119381.	10.8	177
42	Hierarchical 3D Oxygenated Cobalt Vanadium Selenide Nanosheets as Advanced Electrode for Flexible Zinc–Cobalt and Zinc–Air Batteries. Small, 2020, 16, e2004661.	5. 2	54
43	Freestanding 1Tâ€Mn <i>>_x</i> Mo _{1â€"} <i>_x</i> S _{2â€"} <i>_y</i> and MoFe ₂ Ultrathin Nanosheefestate Asymmetric Supercapacitors.	>Se <i><sub< td=""><td>b>y<<mark>/i></mark></td></sub<></i>	b>y< <mark>/i></mark>
44	Small, 2020, 16, e2001691. Tunable construction of FexCo3-xSe4 nanostructures as advanced electrode for boosting capacity and energy density. Chemical Engineering Journal, 2020, 390, 124557.	6.6	43
45	Recent Advances on Metal Organic Framework–Derived Catalysts for Electrochemical Oxygen Reduction Reaction. ACS Symposium Series, 2020, , 231-278.	0.5	6
46	Hierarchical Manganese–Nickel Sulfide Nanosheet Arrays as an Advanced Electrode for All-Solid-State Asymmetric Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21505-21514.	4.0	85
47	Hierarchical 3D Oxygenated Cobalt Molybdenum Selenide Nanosheets as Robust Trifunctional Catalyst for Water Splitting and Zinc–Air Batteries. Small, 2020, 16, e2000797.	5.2	52
48	All ternary metal selenide nanostructures for high energy flexible charge storage devices. Nano Energy, 2019, 65, 103999.	8.2	152
49	Fabrication of Co–Ni–Zn ternary Oxide@NiWO4 core-shell nanowire arrays and Fe2O3-CNTs@GF for ultra-high-performance asymmetric supercapacitor. Composites Part B: Engineering, 2019, 176, 107223.	5.9	49
50	Effects of the composition of reduced graphene oxide/carbon nanofiber nanocomposite on charge storage behaviors. Composites Part B: Engineering, 2019, 178, 107500.	5.9	30
51	Nitrogen-doped graphene encapsulated cobalt iron sulfide as an advanced electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 3941-3952.	5. 2	74
52	Facile synthesis of N-doped graphene supported porous cobalt molybdenum oxynitride nanodendrites for the oxygen reduction reaction. Nanoscale, 2019, 11, 1205-1216.	2.8	27
53	g-C ₃ N ₄ templated synthesis of the Fe ₃ C@NSC electrocatalyst enriched with Fe–N _x active sites for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 16920-16936.	5 . 2	91
54	Boosting the Energy Density of Flexible Solid-State Supercapacitors via Both Ternary NiV ₂ Se ₄ and NiFe ₂ Se ₄ Nanosheet Arrays. Chemistry of Materials, 2019, 31, 4490-4504.	3.2	138

#	Article	IF	Citations
55	Hierarchical Cu@CuxO nanowires arrays-coated gold nanodots as a highly sensitive self-supported electrocatalyst for L-cysteine oxidation. Biosensors and Bioelectronics, 2019, 139, 111327.	5.3	30
56	Hierarchical design of Cu-Ni(OH)2/Cu-MnxOy core/shell nanosheet arrays for ultra-high performance of asymmetric supercapacitor. Chemical Engineering Journal, 2019, 369, 705-715.	6.6	49
57	Kirkendall Growth and Ostwald Ripening Induced Hierarchical Morphology of Ni–Co LDH/MMoS <i>_×</i> (M = Co, Ni, and Zn) Heteronanostructures as Advanced Electrode Materials for Asymmetric Solid-State Supercapacitors. ACS Applied Materials & Diterfaces, 2019, 11, 11555-11567.	4.0	129
58	Metal–organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 8620-8632.	5. 2	129
59	Preparation of modified graphene oxide/polyethyleneimine film with enhanced hydrogen barrier properties by reactive layer-by-layer self-assembly. Composites Part B: Engineering, 2019, 166, 663-672.	5.9	28
60	Mesoporous layered spinel zinc manganese oxide nanocrystals stabilized nitrogen-doped graphene as an effective catalyst for oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 545, 43-53.	5.0	18
61	Constructing MoP _{<i>x</i>} @MnP _{<i>y</i>} Heteronanoparticle-Supported Mesoporous N,P-Codoped Graphene for Boosting Oxygen Reduction and Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 2892-2904.	3. 2	71
62	Pt nanodots monolayer modified mesoporous Cu@CuxO nanowires for improved overall water splitting reactivity. Nano Energy, 2019, 59, 216-228.	8.2	107
63	Rational design of ultrathin 2D tin nickel selenide nanosheets for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2019, 7, 24462-24476.	5 . 2	44
64	A spinel MnCo2O4/NG 2D/2D hybrid nanoarchitectures as advanced electrode material for high performance hybrid supercapacitors. Journal of Alloys and Compounds, 2019, 771, 810-820.	2.8	52
65	Electrochemical synthesis of palladium (Pd) nanorods: An efficient electrocatalyst for methanol and hydrazine electro-oxidation. Composites Part B: Engineering, 2018, 144, 11-18.	5.9	36
66	Hierarchical 3D Zn–Ni–P nanosheet arrays as an advanced electrode for high-performance all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8669-8681.	5.2	116
67	Novel polyaniline/manganese hexacyanoferrate nanoparticles on carbon fiber as binder-free electrode for flexible supercapacitors. Composites Part B: Engineering, 2018, 143, 141-147.	5 . 9	65
68	Hierarchical porous framework of ultrasmall PtPd alloy-integrated graphene as active and stable catalyst for ethanol oxidation. Composites Part B: Engineering, 2018, 143, 96-104.	5.9	36
69	CuAg@Ag Core–Shell Nanostructure Encapsulated by N-Doped Graphene as a High-Performance Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4672-4681.	4.0	71
70	Hierarchical material of carbon nanotubes grown on carbon nanofibers for high performance electrochemical capacitor. Chemical Engineering Journal, 2018, 345, 39-47.	6.6	66
71	Hierarchical nanohoneycomb-like CoMoO ₄ –MnO ₂ core–shell and Fe ₂ O ₃ nanosheet arrays on 3D graphene foam with excellent supercapacitive performance. Journal of Materials Chemistry A, 2018, 6, 7182-7193.	5.2	116
72	Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Progress in Materials Science, 2018, 96, 51-85.	16.0	132

#	Article	IF	Citations
73	Facile synthesis of 4,4′-diaminostilbene-2,2′-disulfonic-acid-grafted reduced graphene oxide and its application as a high-performance asymmetric supercapacitor. Chemical Engineering Journal, 2018, 333, 170-184.	6.6	23
74	Green synthesis of glucose-reduced graphene oxide supported Ag-Cu 2 O nanocomposites for the enhanced visible-light photocatalytic activity. Composites Part B: Engineering, 2018, 138, 35-44.	5.9	80
75	An advanced sandwich-type architecture of MnCo ₂ as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitor. Journal of Materials Chemistry A, 2018. 6. 24509-24522.	5.2	102
76	Nitrogen-Doped Graphene-Encapsulated Nickel Cobalt Nitride as a Highly Sensitive and Selective Electrode for Glucose and Hydrogen Peroxide Sensing Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35847-35858.	4.0	75
77	Flexible Solidâ€State Asymmetric Supercapacitors Based on Nitrogenâ€Doped Graphene Encapsulated Ternary Metalâ€Nitrides with Ultralong Cycle Life. Advanced Functional Materials, 2018, 28, 1804663.	7.8	212
78	Hierarchical Flowerlike Highly Synergistic Three-Dimensional Iron Tungsten Oxide Nanostructure-Anchored Nitrogen-Doped Graphene as an Efficient and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32220-32232.	4.0	48
79	Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today, 2018, 22, 100-131.	6.2	86
80	Highly efficient electrocatalyst of N-doped graphene-encapsulated cobalt-iron carbides towards oxygen reduction reaction. Carbon, 2018, 137, 358-367.	5.4	95
81	Highly Active and Durable Core–Shell fct-PdFe@Pd Nanoparticles Encapsulated NG as an Efficient Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 18734-18745.	4.0	58
82	Hierarchical Heterostructures of Ultrasmall Fe ₂ O ₃ -Encapsulated MoS ₂ /N-Graphene as an Effective Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24523-24532.	4.0	68
83	Sustainable Synthesis of Co@NC Core Shell Nanostructures from Metal Organic Frameworks via Mechanochemical Coordination Selfâ€Assembly: An Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2018, 14, e1800441.	5.2	150
84	Fabrication of 3D graphene-CNTs/l±-MoO3 hybrid film as an advance electrode material for asymmetric supercapacitor with excellent energy density and cycling life. Chemical Engineering Journal, 2018, 352, 268-276.	6.6	79
85	Graphitic carbon nitride modified graphene/Ni Al layered double hydroxide and 3D functionalized graphene for solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2018, 353, 824-838.	6.6	59
86	Facile synthesis of CuCo2O4 composite octahedrons for high performance supercapacitor application. Composites Part B: Engineering, 2018, 150, 269-276.	5.9	72
87	Recent Advances in Metal Alloy-Graphene Hybrids for Biosensors. , 2018, , 57-84.		O
88	Hierarchical NiMoS and NiFeS Nanosheets with Ultrahigh Energy Density for Flexible All Solidâ€State Supercapacitors. Advanced Functional Materials, 2018, 28, 1803287.	7.8	223
89	High-energy solid-state asymmetric supercapacitor based on nickel vanadium oxide/NG and iron vanadium oxide/NG electrodes. Applied Catalysis B: Environmental, 2018, 239, 290-299.	10.8	65
90	Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosensors and Bioelectronics, 2018, 119, 134-140.	5.3	34

#	Article	lF	Citations
91	Facile synthesis of porous CuCo2O4 composite sheets and their supercapacitive performance. Composites Part B: Engineering, 2018, 150, 234-241.	5.9	51
92	Hierarchical Zn–Co–S Nanowires as Advanced Electrodes for All Solid State Asymmetric Supercapacitors. Advanced Energy Materials, 2018, 8, 1702014.	10.2	199
93	Enhanced hydrogen gas barrier performance of diaminoalkane functionalized stitched graphene oxide/polyurethane composites. Composites Part B: Engineering, 2017, 117, 101-110.	5.9	40
94	Surfactant-free synthesis of NiPd nanoalloy/graphene bifunctional nanocomposite for fuel cell. Composites Part B: Engineering, 2017, 114, 319-327.	5.9	44
95	Highly efficient adsorbent based on novel cotton flower-like porous boron nitride for organic pollutant removal. Composites Part B: Engineering, 2017, 123, 45-54.	5. 9	38
96	Effects of grafting methods for functionalization of graphene oxide by dodecylamine on the physical properties of its polyurethane nanocomposites. Journal of Membrane Science, 2017, 540, 108-119.	4.1	38
97	Enhanced Electrochemical and Photocatalytic Performance of Core–Shell CuS@Carbon Quantum Dots@Carbon Hollow Nanospheres. ACS Applied Materials & Dots@Carbon Hollow Nanospheres.	4.0	87
98	Porous Hollow‧tructured LaNiO ₃ Stabilized N,Sâ€Codoped Graphene as an Active Electrocatalyst for Oxygen Reduction Reaction. Small, 2017, 13, 1701884.	5.2	66
99	Hierarchical design of Cu _{$1\hat{a}^*x$} Ni _x S nanosheets for high-performance asymmetric solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19760-19772.	5.2	116
100	Hierarchical 3D Cobaltâ€Doped Fe ₃ O ₄ Nanospheres@NG Hybrid as an Advanced Anode Material for Highâ€Performance Asymmetric Supercapacitors. Small, 2017, 13, 1701275.	5.2	100
101	A hierarchical 2D Ni–Mo–S nanosheet@nitrogen doped graphene hybrid as a Pt-free cathode for high-performance dye sensitized solar cells and fuel cells. Journal of Materials Chemistry A, 2017, 5, 17896-17908.	5. 2	54
102	High-energy asymmetric supercapacitors based on free-standing hierarchical Co–Mo–S nanosheets with enhanced cycling stability. Nanoscale, 2017, 9, 13747-13759.	2.8	113
103	Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor. Carbon, 2017, 122, 247-257.	5.4	130
104	Noncovalent functionalization of reduced graphene oxide with pluronic F127 and its nanocomposites with gum arabic. Composites Part B: Engineering, 2017, 128, 155-163.	5.9	50
105	A novel hierarchical 3D N-Co-CNT@NG nanocomposite electrode for non-enzymatic glucose and hydrogen peroxide sensing applications. Biosensors and Bioelectronics, 2017, 89, 970-977.	5.3	93
106	Enhanced electrocatalytic performance of an ultrafine AuPt nanoalloy framework embedded in graphene towards epinephrine sensing. Biosensors and Bioelectronics, 2017, 89, 750-757.	5.3	46
107	Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application. Chemical Engineering Journal, 2017, 308, 1174-1184.	6.6	92
108	3D hierarchical CoO@MnO ₂ core–shell nanohybrid for high-energy solid state asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 397-408.	5.2	75

#	Article	IF	Citations
109	Fabrication of nitrogen and sulfur co-doped graphene nanoribbons with porous architecture for high-performance supercapacitors. Chemical Engineering Journal, 2017, 312, 180-190.	6.6	130
110	A novel sensitive sensor for serotonin based on high-quality of AuAg nanoalloy encapsulated graphene electrocatalyst. Biosensors and Bioelectronics, 2017, 96, 186-193.	5 . 3	70
111	Novel porous gold-palladium nanoalloy network-supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing. Biosensors and Bioelectronics, 2016, 85, 669-678.	5.3	82
112	Facile synthesis of 3D hierarchical N-doped graphene nanosheet/cobalt encapsulated carbon nanotubes for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9555-9565.	5.2	119
113	Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosensors and Bioelectronics, 2016, 81, 259-267.	5.3	152
114	Facile fabrication of FeN nanoparticles/nitrogen-doped graphene core-shell hybrid and its use as a platform for NADH detection in human blood serum. Biosensors and Bioelectronics, 2016, 83, 68-76.	5.3	47
115	Facile fabrication of highly durable Pt NPs/3D graphene hierarchical nanostructure for proton exchange membrane fuel cells. Carbon, 2016, 109, 805-812.	5.4	14
116	Effect of high molecular weight polyethyleneimine functionalized graphene oxide coated polyethylene terephthalate film on the hydrogen gas barrier properties. Composites Part B: Engineering, 2016, 106, 316-323.	5.9	40
117	Facile fabrication of Co ₂ CuS ₄ nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 17560-17571.	5.2	147
118	Preparation and enhanced mechanical properties of non-covalently-functionalized graphene oxide/cellulose acetate nanocomposites. Composites Part B: Engineering, 2016, 90, 223-231.	5.9	71
119	In situ synthesis of graphene-encapsulated gold nanoparticle hybrid electrodes for non-enzymatic glucose sensing. Carbon, 2016, 98, 90-98.	5.4	84
120	Nitrogenâ€Doped Graphene Nanosheets with FeN Core–Shell Nanoparticles as Highâ€Performance Counter Electrode Materials for Dyeâ€Sensitized Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500348.	1.9	92
121	Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors. Journal of Power Sources, 2016, 308, 149-157.	4.0	117
122	Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film. Journal of Membrane Science, 2016, 500, 106-114.	4.1	77
123	Preparation of reduced graphene oxide-NiFe 2 O 4 nanocomposites forÂthe electrocatalytic oxidation of hydrazine. Composites Part B: Engineering, 2015, 79, 649-659.	5.9	81
124	Novel route to synthesis of N-doped graphene/Cu–Ni oxide composite for high electrochemical performance. Carbon, 2015, 94, 962-970.	5.4	79
125	Preparation and properties of reduced graphene oxide/polyacrylonitrile nanocomposites using polyvinyl phenol. Composites Part B: Engineering, 2015, 80, 238-245.	5.9	86
126	Facile synthesis of high quality multi-walled carbon nanotubes on novel 3D KIT-6: application in high performance dye-sensitized solar cells. Nanoscale, 2015, 7, 679-689.	2.8	9

#	Article	IF	CITATIONS
127	Enhancement of physical, mechanical, and gas barrier properties in noncovalently functionalized graphene oxide/poly(vinylidene fluoride) composites. Carbon, 2015, 81, 329-338.	5.4	84
128	Effects of covalent surface modifications on the electrical and electrochemical properties of graphene using sodium 4-aminoazobenzene-4′-sulfonate. Carbon, 2013, 54, 310-322.	5.4	65
129	Growth of well graphitized MWCNTs over novel 3D cubic bimetallic KIT-6 towards the development of an efficient counter electrode for dye-sensitized solar cells. Organic Electronics, 2013, 14, 1833-1843.	1.4	8
130	Facile fabrication of dye-sensitized solar cells utilizing carbon nanotubes grown over 2D hexagonal bimetallic ordered mesoporous materials. Journal of Power Sources, 2013, 225, 364-373.	4.0	13
131	Effects of hybrid carbon fillers of polymer composite bipolar plates on the performance of direct methanol fuel cells. Composites Part B: Engineering, 2013, 51, 98-105.	5.9	39
132	Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene. Journal of Alloys and Compounds, 2013, 562, 134-142.	2.8	91
133	Facile and controlled growth of SWCNT on well-dispersed Ni-SBA-15 for an efficient electro-catalytic oxidation of ascorbic acid, dopamine and uric acid. Journal of Molecular Catalysis A, 2013, 372, 13-22.	4.8	22
134	Effective synthesis of carbon nanotubes of high purity over Cr–Ni–SBA-15 and its application in high performance dye-sensitized solar cells. RSC Advances, 2013, 3, 4321.	1.7	11
135	Growth of carbon nanotubes over transition metal loaded on Co-SBA-15 and its application for high performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 5070.	5.2	26
136	Effective Synthesis of Well-Graphitized Carbon Nanotubes on Bimetallic SBA-15 Template for Use as Counter Electrode in Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research, 2013, 52, 384-393.	1.8	20
137	Facile Method for the Preparation of Water Dispersible Graphene using Sulfonated Poly(ether–ether–ketone) and Its Application as Energy Storage Materials. Langmuir, 2012, 28, 9825-9833.	1.6	85
138	Synthesis of water soluble sulfonated polyaniline and determination of crystal structure. Journal of Applied Polymer Science, 2010, 117, 2025-2035.	1.3	37
139	Swelling behavior of polyacrylamide/laponite clay nanocomposite hydrogels: pH-sensitive property. Composites Part B: Engineering, 2009, 40, 275-283.	5.9	71
140	Novel PAAm/Laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior. Composites Part B: Engineering, 2008, 39, 756-763.	5.9	87