Mee Len Chye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8858894/publications.pdf

Version: 2024-02-01

138 papers 9,404 citations

50566 48 h-index 93 g-index

140 all docs

140 docs citations

times ranked

140

15026 citing authors

#	Article	IF	CITATIONS
1	Interactions between plant lipid-binding proteins and their ligands. Progress in Lipid Research, 2022, 86, 101156.	5. 3	6
2	Transgenic manipulation of triacylglycerol biosynthetic enzymes in B. napus alters lipid-associated gene expression and lipid metabolism. Scientific Reports, 2022, 12, 3352.	1.6	1
3	Oxylipin signaling in salt-stressed soybean is modulated by ligand-dependent interaction of Class II acyl-CoA-binding proteins with lipoxygenase. Plant Cell, 2022, 34, 1117-1143.	3.1	10
4	Overexpressing Arabidopsis thaliana ACBP6 in transgenic rapid-cycling Brassica napus confers cold tolerance. Plant Methods, 2022, 18, 62.	1.9	4
5	Overexpression and Inhibition of 3-Hydroxy-3-Methylglutaryl-CoA Synthase Affect Central Metabolic Pathways in Tobacco. Plant and Cell Physiology, 2021, 62, 205-218.	1.5	3
6	The overexpression of rice ACYL-COA-BINDING PROTEIN4 improves salinity tolerance in transgenic rice. Environmental and Experimental Botany, 2021, 183, 104349.	2.0	14
7	Galactolipid and Phospholipid Profile and Proteome Alterations in Soybean Leaves at the Onset of Salt Stress. Frontiers in Plant Science, 2021, 12, 644408.	1.7	10
8	Plant Acyl-CoA-Binding Proteinsâ€"Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells, 2021, 10, 1064.	1.8	11
9	In silico Analysis of Acyl-CoA-Binding Protein Expression in Soybean. Frontiers in Plant Science, 2021, 12, 646938.	1.7	8
10	Investigations of Lipid Binding to Acyl-CoA-Binding Proteins (ACBP) Using Isothermal Titration Calorimetry (ITC). Methods in Molecular Biology, 2021, 2295, 401-415.	0.4	2
11	Roles of acyl-CoA binding proteins in plant reproduction. Journal of Experimental Botany, 2021, , .	2.4	4
12	Polyunsaturated linolenoylâ€CoA modulates ERFâ€VIIâ€mediated hypoxia signaling in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2020, 62, 330-348.	4.1	32
13	Overexpression of HMG-CoA synthase promotes Arabidopsis root growth and adversely affects glucosinolate biosynthesis. Journal of Experimental Botany, 2020, 71, 272-289.	2.4	10
14	Characterization of Oil Palm Acyl-CoA-Binding Proteins and Correlation of Their Gene Expression with Oil Synthesis. Plant and Cell Physiology, 2020, 61, 735-747.	1.5	14
15	Characterization and function of a sunflower (Helianthus annuus L.) Class II acyl-CoA-binding protein. Plant Science, 2020, 300, 110630.	1.7	6
16	RICE ACYL-COA-BINDING PROTEIN6 Affects Acyl-CoA Homeostasis and Growth in Rice. Rice, 2020, 13, 75.	1.7	9
17	Crystal structure of the rice acylâ€CoAâ€binding protein OsACBP2 in complex with C18:3â€CoA reveals a novel pattern of binding to acylâ€CoA esters. FEBS Letters, 2020, 594, 3568-3575.	1.3	6
18	The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Scientific Reports, 2020, 10, 14918.	1.6	20

#	Article	IF	Citations
19	Subcellular Localization of Rice Acyl-CoA-Binding Proteins ACBP4 and ACBP5 Supports Their Non-redundant Roles in Lipid Metabolism. Frontiers in Plant Science, 2020, 11, 331.	1.7	11
20	The overexpression of rice <scp>ACYL</scp> â€ <scp>CoA</scp> â€ <scp>BINDING PROTEIN</scp> 2 increases grain size and bran oil content in transgenic rice. Plant Journal, 2019, 100, 1132-1147.	2.8	28
21	Comparative Transcriptomics Analysis of Brassica napus L. during Seed Maturation Reveals Dynamic Changes in Gene Expression between Embryos and Seed Coats and Distinct Expression Profiles of Acyl-CoA-Binding Proteins for Lipid Accumulation. Plant and Cell Physiology, 2019, 60, 2812-2825.	1.5	18
22	Arabidopsis acylâ€CoAâ€binding proteins regulate the synthesis of lipid signals. New Phytologist, 2019, 223, 113-117.	3.5	20
23	Overexpression of a Monocot Acylâ€CoAâ€Binding Protein Confers Broadâ€Spectrum Pathogen Protection in a Dicot. Proteomics, 2019, 19, e1800368.	1.3	17
24	Thermodynamic insights into an interaction between ACYL-CoA–BINDING PROTEIN2 and LYSOPHOSPHOLIPASE2 in Arabidopsis. Journal of Biological Chemistry, 2019, 294, 6214-6226.	1.6	24
25	Arabidopsis cytosolic acyl oAâ€binding proteins function in determining seed oil composition. Plant Direct, 2019, 3, e00182.	0.8	17
26	Arabidopsis <scp>ACYL</scp> â€ <scp>COA</scp> â€ <scp>BINDING PROTEIN</scp> 1 interacts with <scp>STEROL</scp> C4â€ <scp>METHYL OXIDASE</scp> 1â€2 to modulate gene expression of homeodomainâ€leucine zipper <scp>IV</scp> transcription factors. New Phytologist, 2018, 218, 183-200.	3.5	30
27	Improved fruit αâ€ŧocopherol, carotenoid, squalene and phytosterol contents through manipulation of <i>Brassica juncea</i> 3â€ <scp>HYDROXY</scp> â€3â€ <scp>METHYLGLUTARYL</scp> â€ <scp>COA SYNTHASE< in transgenic tomato. Plant Biotechnology Journal, 2018, 16, 784-796.</scp>	/s €p >1	50
28	Arabidopsis Acyl-Coenzyme-A-Binding Protein ACBP1 interacts with AREB1 and mediates salt and osmotic signaling in seed germination and seedling growth. Environmental and Experimental Botany, 2018, 156, 130-140.	2.0	17
29	Depletion of Arabidopsis ACYL-COA-BINDING PROTEIN3 Affects Fatty Acid Composition in the Phloem. Frontiers in Plant Science, 2018, 9, 2.	1.7	33
30	The first plant acyl-CoA-binding protein structures: the close homologues OsACBP1 and OsACBP2 from rice. Acta Crystallographica Section D: Structural Biology, 2017, 73, 438-448.	1.1	29
31	Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis. Plant Physiology, 2017, 174, 1420-1435.	2.3	50
32	Arabidopsis thaliana Acyl-CoA-binding protein ACBP6 interacts with plasmodesmata-located protein PDLP8. Plant Signaling and Behavior, 2017, 12, e1359365.	1.2	23
33	Kelch-motif containing acyl-CoA binding proteins AtACBP4 and AtACBP5 are differentially expressed and function in floral lipid metabolism. Plant Molecular Biology, 2017, 93, 209-225.	2.0	30
34	Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Progress in Lipid Research, 2016, 63, 165-181.	5.3	67
35	Acyl-CoA-Binding Proteins (ACBPs) in Plant Development. Sub-Cellular Biochemistry, 2016, 86, 363-404.	1.0	15
36	Present Status and Future Prospects of Transgenic Approaches for Drought Tolerance. , 2016, , 549-569.		1

#	Article	IF	Citations
37	Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition. Plant Molecular Biology, 2016, 92, 717-730.	2.0	41
38	The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnology Advances, 2016, 34, 697-713.	6.0	193
39	The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1409-1421.	1.2	21
40	Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities. Plant Physiology and Biochemistry, 2016, 102, 141-150.	2.8	24
41	Deciphering the roles of acyl-CoA-binding proteins in plant cells. Protoplasma, 2016, 253, 1177-1195.	1.0	37
42	Plant Cytosolic Acylâ€CoAâ€Binding Proteins. Lipids, 2016, 51, 1-13.	0.7	37
43	Rapid labeling of intracellular His-tagged proteins in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2948-2953.	3.3	80
44	Site-directed Mutagenesis Shows the Significance of Interactions with Phospholipids and the G-protein OsYchF1 for the Physiological Functions of the Rice GTPase-activating Protein 1 (OsGAP1). Journal of Biological Chemistry, 2015, 290, 23984-23996.	1.6	13
45	Expression of <scp><i>A</i></scp> <i>rabidopsis</i> acylâ€ <scp>CoA</scp> â€binding proteins <scp>AtACBP</scp> 1 and <scp>AtACBP</scp> 4 confers <scp>P</scp> b(<scp>II</scp>) accumulation in <scp><i>B</i></scp> <i>Rop><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><i>Sep><ip><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><ip>Sep><i< td=""><td>2.8</td><td>50</td></i<></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></ip></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.8	50
46	The Arabidopsis Cytosolic Acyl-CoA-Binding Proteins Play Combinatory Roles in Pollen Development. Plant and Cell Physiology, 2015, 56, 322-333.	1.5	48
47	Transgenic Tobacco Overexpressing Brassica juncea HMG-CoA Synthase 1 Shows Increased Plant Growth, Pod Size and Seed Yield. PLoS ONE, 2014, 9, e98264.	1.1	28
48	Gene Expression in Plant Lipid Metabolism in Arabidopsis Seedlings. PLoS ONE, 2014, 9, e107372.	1.1	31
49	Rice acyl-CoA-binding proteins OsACBP4 and OsACBP5 are differentially localized in the endoplasmic reticulum of transgenic <i>Arabidopsis</i> Plant Signaling and Behavior, 2014, 9, e29544.	1.2	29
50	<i>Arabidopsis</i> cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Bioscience Reports, 2014, 34, e00165.	1.1	53
51	Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. Journal of Experimental Botany, 2014, 65, 5473-5483.	2.4	74
52	Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds. Journal of Biotechnology, 2014, 174, 49-56.	1.9	15
53	Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. Plant Cell Reports, 2014, 33, 1005-1022.	2.8	63
54	Transgenic Arabidopsis Flowers Overexpressing Acyl-CoA-Binding Protein ACBP6 are Freezing Tolerant. Plant and Cell Physiology, 2014, 55, 1055-1071.	1.5	59

#	Article	IF	Citations
55	Subcellular localization of rice acylâ€CoAâ€binding proteins (ACBPs) indicates that Os <scp>ACBP</scp> 6:: <scp>GFP</scp> is targeted to the peroxisomes. New Phytologist, 2014, 203, 469-482.	3.5	62
56	Engineering plants to tolerate abiotic stresses. Biocatalysis and Agricultural Biotechnology, 2014, 3, 81-87.	1.5	21
57	A Mathematical Model on Water Redistribution Mechanism ofÂtheÂSeismonastic Movement of Mimosa Pudica. Biophysical Journal, 2013, 105, 266-275.	0.2	9
58	Interactions between Arabidopsis acyl-CoA-binding proteins and their protein partners. Planta, 2013, 238, 239-245.	1.6	26
59	Overexpression of Arabidopsis acylâ€CoAâ€binding protein ACBP2 enhances drought tolerance. Plant, Cell and Environment, 2013, 36, 300-314.	2.8	73
60	A Vigna radiata 8S Globulin α′ Promoter Drives Efficient Expression of GUS in Arabidopsis Cotyledonary Embryos. Journal of Agricultural and Food Chemistry, 2013, 61, 6423-6429.	2.4	5
61	Arabidopsis acylâ€CoAâ€binding protein <scp>ACBP</scp> 1 participates in the regulation of seed germination and seedling development. Plant Journal, 2013, 74, 294-309.	2.8	85
62	Sorghum Extracellular Leucine-Rich Repeat Protein SbLRR2 Mediates Lead Tolerance in Transgenic Arabidopsis. Plant and Cell Physiology, 2013, 54, 1549-1559.	1.5	31
63	The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation. Journal of Experimental Botany, 2012, 63, 2985-3000.	2.4	57
64	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
65	Overexpression of <i>Brassica juncea</i> wildâ€type and mutant HMGâ€CoA synthase 1 in Arabidopsis upâ€regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnology Journal, 2012, 10, 31-42.	4.1	111
66	New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Progress in Lipid Research, 2011, 50, 141-151.	5.3	150
67	The rice acylâ€CoAâ€binding protein gene family: phylogeny, expression and functional analysis. New Phytologist, 2011, 189, 1170-1184.	3.5	78
68	Overexpression of Arabidopsis ACBP3 Enhances NPR1-Dependent Plant Resistance to <i>Pseudomonas syringe</i> pv <i>tomato</i> DC3000 Â Â. Plant Physiology, 2011, 156, 2069-2081.	2.3	101
69	The <i>Arabidopsis acbp1acbp2</i> double mutant lacking acyl oAâ€binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytologist, 2010, 186, 843-855.	3.5	85
70	Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. Plant Journal, 2010, 62, no-no.	2.8	114
71	Overexpression of <i>Arabidopsis</i> Acyl-CoA Binding Protein ACBP3 Promotes Starvation-Induced and Age-Dependent Leaf Senescence Â. Plant Cell, 2010, 22, 1463-1482.	3.1	225
72	Protein interactors of acyl-CoA-binding protein ACBP2 mediate cadmium tolerance in Arabidopsis. Plant Signaling and Behavior, 2010, 5, 1025-1027.	1.2	15

#	Article	IF	Citations
73	Depletion of the Membrane-Associated Acyl-Coenzyme A-Binding Protein ACBP1 Enhances the Ability of Cold Acclimation in Arabidopsis. Plant Physiology, 2010, 152, 1585-1597.	2.3	96
74	The <i> Arabidopsis thaliana </i> ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability. Autophagy, 2010, 6, 802-804.	4.3	28
75	Arabidopsis acyl-CoA-binding proteins ACBP1 and ACBP2 show different roles in freezing stress. Plant Signaling and Behavior, 2010, 5, 607-609.	1.2	9
76	Expression of ACBP4 and ACBP5 proteins is modulated by light in Arabidopsis. Plant Signaling and Behavior, 2009, 4, 1063-1065.	1.2	15
77	Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-CoA-binding proteins that bind phosphatidylcholine and oleoyl-CoA ester. Plant Physiology and Biochemistry, 2009, 47, 926-933.	2.8	57
78	The first crystal structures of a family 19 class IV chitinase: the enzyme from Norway spruce. Plant Molecular Biology, 2009, 71, 277-289.	2.0	53
79	<i>Arabidopsis thaliana</i> acylâ€CoAâ€binding protein ACBP2 interacts with heavyâ€metalâ€binding farnesylated protein AtFP6. New Phytologist, 2009, 181, 89-102.	3.5	141
80	An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiology and Biochemistry, 2009, 47, 479-484.	2.8	95
81	Use of GFP to Investigate Expression of Plant-Derived Vaccines. Methods in Molecular Biology, 2009, 515, 275-285.	0.4	5
82	Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition. Plant Molecular Biology, 2008, 68, 571-583.	2.0	71
83	Overexpression of membraneâ€associated acyl oAâ€binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant Journal, 2008, 54, 141-151.	2.8	121
84	Arabidopsis ACBP1 overexpressors are Pb(II)-tolerant and accumulate Pb(II). Plant Signaling and Behavior, 2008, 3, 693-694.	1.2	9
85	ABrassica junceachitinase with two-chitin binding domains show anti-microbial properties against phytopathogens and gram-negative bacteria. Plant Signaling and Behavior, 2008, 3, 1103-1105.	1.2	12
86	Arabidopsis ACBP6 is an acyl-CoA-binding protein associated with phospholipid metabolism. Plant Signaling and Behavior, 2008, 3, 1019-1020.	1.2	8
87	Brassica juncea chitinase BjCHl1 inhibits growth of fungal phytopathogens and agglutinates Gram-negative bacteria. Journal of Experimental Botany, 2008, 59, 3475-3484.	2.4	28
88	Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein. Journal of Experimental Botany, 2008, 59, 3997-4006.	2.4	105
89	Overexpression of the Arabidopsis 10-Kilodalton Acyl-Coenzyme A-Binding Protein ACBP6 Enhances Freezing Tolerance. Plant Physiology, 2008, 148, 304-315.	2.3	146
90	Crystal structures of a family $\hat{a} \in f19$ chitinase from <i>Brassica juncea</i> show flexibility of binding cleft loops. FEBS Journal, 2007, 274, 3695-3703.	2.2	33

#	Article	IF	Citations
91	Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers in Bioscience - Landmark, 2007, 12, 2494.	3.0	140
92	Understandin glsoprenoid Biochemistry. , 2007, , 123-134.		0
93	Corrigendum to "Transgenic plant-derived siRNAs can suppress propagation of influenza virus in mammalian cells―[FEBS Lett. 577 (2004) 345-350]. FEBS Letters, 2006, 580, 4302-4302.	1.3	0
94	Accumulation of Recombinant SARS-CoV Spike Protein in Plant Cytosol and Chloroplasts Indicate Potential for Development of Plant-Derived Oral Vaccines. Experimental Biology and Medicine, 2006, 231, 1346-1352.	1.1	58
95	Downregulation of Solanum americanum genes encoding proteinase inhibitor II causes defective seed development. Plant Journal, 2006, 45, 58-70.	2.8	34
96	Serine proteinase inhibitor proteins: Exogenous and endogenous functions. In Vitro Cellular and Developmental Biology - Plant, 2006, 42, 100-108.	0.9	36
97	Arabidopsis ACBP3 is an extracellularly targeted acyl-CoA-binding protein. Planta, 2006, 223, 871-881.	1.6	101
98	Expression of viral capsid protein antigen against Epstein-Barr virus in plastids of Nicotiana tabacum cv. SR1. Biotechnology and Bioengineering, 2006, 94, 1129-1137.	1.7	27
99	Structural basis for the design of potent and species-specific inhibitors of 3-hydroxy-3-methylglutaryl CoA synthases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11491-11496.	3.3	37
100	A truncated hepatitis E virus ORF2 protein expressed in tobacco plastids is immunogenic in mice. World Journal of Gastroenterology, 2006, 12, 306.	1.4	50
101	An agglutinating chitinase with two chitin-binding domains confers fungal protection in transgenic potato. Planta, 2005, 220, 717-730.	1.6	52
102	Brassica juncea HMG-CoA synthase: localization of mRNA and protein. Planta, 2005, 221, 844-856.	1.6	29
103	ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA. Plant Molecular Biology, 2005, 55, 297-309.	2.0	6
104	Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Molecular Biology, 2005, 57, 629-643.	2.0	50
105	Arabidopsis Acyl-CoA-Binding Protein ACBP2 Interacts With an Ethylene-Responsive Element-Binding Protein, AtEBP, via its Ankyrin Repeats. Plant Molecular Biology, 2004, 54, 233-243.	2.0	167
106	Inhibition of endogenous trypsin- and chymotrypsin-like activities in transgenic lettuce expressing heterogeneous proteinase inhibitor SaPIN2a. Planta, 2004, 218, 623-629.	1.6	33
107	Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. Planta, 2004, 219, 1010-1022.	1.6	43
108	ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA. Plant Molecular Biology, 2004, 55, 297-309.	2.0	86

#	Article	IF	CITATIONS
109	Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea chitinase BjCHI1. Plant Molecular Biology, 2004, 56, 285-298.	2.0	31
110	Transgenic plant-derived siRNAs can suppress propagation of influenza virus in mammalian cells. FEBS Letters, 2004, 577, 345-350.	1.3	14
111	Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. Biochemical Journal, 2004, 383, 517-527.	1.7	50
112	G-box binding coincides with increased Solanum melongena cysteine proteinase expression in senescent fruits and circadian-regulated leaves. Plant Molecular Biology, 2003, 51, 9-19.	2.0	22
113	Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Molecular Biology, 2003, 51, 295-311.	2.0	40
114	Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2. Plant Molecular Biology, 2003, 51, 483-492.	2.0	95
115	Lipase-catalyzed hydrolysis of TG containing acetylenic FA. Lipids, 2002, 37, 997-1006.	0.7	6
116	Tobacco-expressed Brassica juncea chitinase BjCHI1 shows antifungal activity in vitro. Plant Molecular Biology, 2002, 50, 283-294.	2.0	23
117	A proteinase inhibitor II of Solanum americanum is expressed in phloem. Plant Molecular Biology, 2001, 47, 727-738.	2.0	48
118	A phylogenetic analysis of the Schisandraceae based on morphology and nuclear ribosomal ITS sequences. Botanical Journal of the Linnean Society, 2001, 135, 401-411.	0.8	24
119	Expression of Brassica juncea 3-hydroxy-3-methylglutaryl CoA synthase is developmentally regulated and stress-responsive. Plant Journal, 2000, 22, 415-426.	2.8	61
120	A phylogenetic analysis of the Illiciaceae based on sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA. Plant Systematics and Evolution, 2000, 223, 81-90.	0.3	33
121	Single amino acid substitutions at the acyl-CoA-binding domain interrupt 14[C]palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats. Plant Molecular Biology, 2000, 44, 711-721.	2.0	94
122	Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal. Plant Journal, 1999, 17, 321-327.	2.8	106
123	Isolation of a gene encoding Arabidopsis membrane-associated acyl-CoA binding protein and immunolocalization of its gene product. Plant Journal, 1999, 18, 205-214.	2.8	106
124	Methyl jasmonate induces expression of a novel Brassica juncea chitinase with two chitin-binding domains., 1999, 40, 1009-1018.		37
125	Arabidopsis cDNA encoding a membrane-associated protein with an acyl-CoA binding domain. , 1998, 38, 827-838.		83
126	Molecular cytogenetic studies in rubber, <i>Hevea brasiliensis</i> Muell. Arg. (Euphorbiaceae). Genome, 1998, 41, 464-467.	0.9	3

#	Article	IF	Citations
127	Characterization of TSCL, a nonviral retroposon from Arabidopsis thaliana. Plant Molecular Biology, 1997, 35, 893-904.	2.0	13
128	Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana. Plant Molecular Biology, 1996, 30, 1259-1275.	2.0	70
129	A cDNA clone encoding Brassica calmodulin. Plant Molecular Biology, 1995, 27, 419-423.	2.0	5
130	?-1,3-Glucanase is highly-expressed in laticifers of Hevea brasiliensis. Plant Molecular Biology, 1995, 29, 397-402.	2.0	64
131	Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Plant Molecular Biology, 1992, 19, 473-484.	2.0	124
132	Isolation and sequence analysis of a cDNA clone encoding ethylene-forming enzyme in Brassica juncea (L.) Czern & Coss. Plant Molecular Biology, 1992, 19, 541-544.	2.0	15
133	Isolation and nucleotide sequence of a cDNA clone encoding the beta subunit of mitochondrial ATP synthase from Hevea brasiliensis. Plant Molecular Biology, 1992, 18, 611-612.	2.0	17
134	Nucleotide sequence of a cDNA clone encoding the precursor of ribulose-1,5-bisphosphate carboxylase small subunit from Hevea brasiliensis (rubber tree) Plant Molecular Biology, 1991, 16, 1077-1078.	2.0	5
135	Characterization of cDNA and genomic clones encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Hevea brasiliensis. Plant Molecular Biology, 1991, 16, 567-577.	2.0	81
136	The rice phytochrome gene: structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5' upstream region Plant Cell, 1989, 1, 351-360.	3.1	158
137	The Rice Phytochrome Gene: Structure, Autoregulated Expression, and Binding of GT-1 to a Conserved Site in the 5' Upstream Region. Plant Cell, 1989, 1, 351.	3.1	74
138	Construction of a genetic map of chromosomal auxotrophic markers in Streptomyces peucetius var. caesius Journal of General and Applied Microbiology, 1985, 31, 231-241.	0.4	5