Feng Wu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8858660/feng-wu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 310
 13,075
 66
 99

 papers
 citations
 h-index
 g-index

 325
 16,948
 11.1
 7.03

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
310	Synergetic Anion Vacancies and Dense Heterointerfaces into Bimetal Chalcogenide Nanosheet Arrays for Boosting Electrocatalysis Sulfur Conversion <i>Advanced Materials</i> , 2022 , e2109552	24	9
309	Toward Highly Stable Anode for Secondary Batteries: Employing TiO Shell as Elastic Buffering Marix for FeO Nanoparticles <i>Small</i> , 2022 , e2105713	11	3
308	An Ion-Dipole-Reinforced Polyether Electrolyte with Ion-Solvation Cages Enabling Highlfoltage-Tolerant and Ion-Conductive Solid-State Lithium Metal Batteries (Adv. Funct. Mater. 5/2022). <i>Advanced Functional Materials</i> , 2022 , 32, 2270031	15.6	O
307	Defects and sulfur-doping design of porous carbon spheres for high-capacity potassium-ion storage. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 682-689	13	7
306	Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. <i>Energy Material Advances</i> , 2022 , 2022, 1-11	1	6
305	Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zinc-ion Batteries <i>Advanced Materials</i> , 2022 , e2200782	24	10
304	Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials. <i>International Journal of Minerals, Metallurgy and Materials</i> , 2022 , 29, 942-952	3.1	1
303	Solvent Effects on Kinetics and Electrochemical Performances of Rechargeable Aluminum Batteries. <i>Energy Material Advances</i> , 2022 , 2022, 1-10	1	4
302	A Designed Lithiophilic Carbon Channel on Separator to Regulate Lithium Deposition Behavior. <i>Small</i> , 2021 , e2104390	11	O
301	Closed-loop selective recycling process of spent LiNiCoMnO batteries by thermal-driven conversion. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127757	12.8	3
300	High-Performance Aqueous Zinc Batteries Based on Organic/Organic Cathodes Integrating Multiredox Centers. <i>Advanced Materials</i> , 2021 , e2106469	24	10
299	Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Zn-Ion Batteries. <i>Advanced Materials</i> , 2021 , e2106897	24	26
298	From Flower-Like to Spherical Deposition: A GCNT Aerogel Scaffold for Fast-Charging Lithium Metal Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2102454	21.8	2
297	Lightweight Shield to Stabilize Li Metal Anodes at High Current Rates. <i>ACS Applied Energy Materials</i> , 2021 , 4, 11878-11885	6.1	1
296	Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. <i>Nano-Micro Letters</i> , 2021 , 13, 203	19.5	20
295	An Antipulverization and High-Continuity Lithium Metal Anode for High-Energy Lithium Batteries. <i>Advanced Materials</i> , 2021 , e2105029	24	2
294	Engineering Catalytic CoSe-ZnSe Heterojunctions Anchored on Graphene Aerogels for Bidirectional Sulfur Conversion Reactions. <i>Advanced Science</i> , 2021 , e2103456	13.6	9

(2021-2021)

293	Roles of Fast-Ion Conductor LiTaO Modifying Ni-rich Cathode Material for Li-Ion Batteries. <i>ChemSusChem</i> , 2021 , 14, 1955-1961	8.3	9
292	High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. <i>Electrochemical Energy Reviews</i> , 2021 , 4, 382-446	29.3	41
291	Effect of Electrolyte Additives on the Cycling Performance of Li Metal and the Kinetic Mechanism Analysis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 18283-18293	9.5	1
290	Bimetallic Antimony-Vanadium Oxide Nanoparticles Embedded in Graphene for Stable Lithium and Sodium Storage. <i>ACS Applied Materials & Districted Sodium Storage</i> . <i>ACS Applied Materials & Districted Sodium Storage</i> .	9.5	1
289	Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. <i>Nano Letters</i> , 2021 , 21, 3310-3317	11.5	31
288	Advanced Li-S Batteries Enabled by a Biomimetic Polysulfide-Engulfing Net. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 23811-23821	9.5	O
287	A Universal Method for Enhancing the Structural Stability of Ni-Rich Cathodes Via the Synergistic Effect of Dual-Element Cosubstitution. <i>ACS Applied Materials & District Research</i> 13, 24925-24936	9.5	16
286	Enhanced Electrochemical Kinetics with Highly Dispersed Conductive and Electrocatalytic Mediators for Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2021 , 33, e2100810	24	35
285	Improved Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Induced by a Facile Polymer Coating for Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 6205-6213	6.1	2
284	Metal Chalcogenides with Heterostructures for High-Performance Rechargeable Batteries. <i>Small Science</i> , 2021 , 1, 2100012		21
283	Recovery and Reuse of Anode Graphite from Spent Lithium-Ion Batteries via Citric Acid Leaching. <i>ACS Applied Energy Materials</i> , 2021 , 4, 6261-6268	6.1	12
282	Ultrathin Surface Coating of Nitrogen-Doped Graphene Enables Stable Zinc Anodes for Aqueous Zinc-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2101649	24	62
281	Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes. <i>Advanced Materials</i> , 2021 , 33, e2008810	24	37
280	Self-Assembly of 0D-2D Heterostructure Electrocatalyst from MOF and MXene for Boosted Lithium Polysulfide Conversion Reaction. <i>Advanced Materials</i> , 2021 , 33, e2101204	24	38
279	Burning magnesium in carbon dioxide for highly effective phosphate removal 2021 , 3, 330-337		1
278	Lithium Induced Nano-Sized Copper with Exposed Lithiophilic Surfaces to Achieve Dense Lithium Deposition for Lithium Metal Anode. <i>Advanced Functional Materials</i> , 2021 , 31, 2006950	15.6	33
277	Research Progress of Lithium Plating on Graphite Anode in Lithium-Ion Batteries. <i>Chinese Journal of Chemistry</i> , 2021 , 39, 165-173	4.9	12
276	Interfacial Degradation and Optimization of Li-rich Cathode Materials Chinese Journal of Chemistry, 2021 , 39, 402-420	4.9	3

275	Multi-electron Reaction Materials for High-Energy-Density Secondary Batteries: Current Status and Prospective. <i>Electrochemical Energy Reviews</i> , 2021 , 4, 35-66	29.3	33
274	Ultrathin 3 V Spinel Clothed Layered Lithium-Rich Oxides as Heterostructured Cathode for High-Energy and High-Power Li-ion Batteries <i>Chinese Journal of Chemistry</i> , 2021 , 39, 345-352	4.9	4
273	Strategies of Removing Residual Lithium Compounds on the Surface of Ni-Rich Cathode Materials © Chinese Journal of Chemistry, 2021 , 39, 189-198	4.9	18
272	High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs. <i>ACS Applied Materials & Different Socs.</i> 13, 6286-6297	9.5	7
271	A lithium-ion battery recycling technology based on a controllable product morphology and excellent performance. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18623-18631	13	4
270	Regulating the Solvation Structure of Nonflammable Electrolyte for Dendrite-Free Li-Metal Batteries. <i>ACS Applied Materials & Description</i> (1988) 100 (198	9.5	10
269	Powering lithium-sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets. <i>Nanoscale</i> , 2021 , 13, 16690-16695	7.7	1
268	Hard Carbon Anode Materials for Sodium-Ion Batteries 2021 , 87-109		
267	Sustainable Regeneration of High-Performance Li1\(\mathbb{H}\)NaxCoO2 from Cathode Materials in Spent Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 2607-2615	6.1	7
266	Electrolyte-Resistant Dual Materials for the Synergistic Safety Enhancement of Lithium-Ion Batteries. <i>Nano Letters</i> , 2021 , 21, 2074-2080	11.5	12
265	Fe2VO4 Nanoparticles Anchored on Ordered Mesoporous Carbon with Pseudocapacitive Behaviors for Efficient Sodium Storage. <i>Advanced Functional Materials</i> , 2021 , 31, 2009756	15.6	10
264	Hierarchical Triple-Shelled MnCo O Hollow Microspheres as High-Performance Anode Materials for Potassium-Ion Batteries. <i>Small</i> , 2021 , 17, e2007597	11	14
263	Local Strong Solvation Electrolyte Trade-Off between Capacity and Cycle Life of Li-O2 Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2101831	15.6	9
262	Nature-inspired porous multichannel carbon monolith: Molecular cooperative enables sustainable production and high-performance capacitive energy storage. <i>Informa</i> Materily, 2021 , 3, 1154	23.1	4
261	Anion-Doped Cobalt Selenide with Porous Architecture for High-Rate and Flexible Lithium-Sulfur Batteries <i>Small Methods</i> , 2021 , 5, e2100649	12.8	10
260	Resolving the Structural Defects of Spent Li CoO Particles to Directly Reconstruct High Voltage Performance Cathode for Lithium-Ion Batteries <i>Small Methods</i> , 2021 , 5, e2100672	12.8	3
259	Sublimated Se-Induced Formation of Dual-Conductive Surface Layers for High-Performance Ni-Rich Layered Cathodes. <i>ChemElectroChem</i> , 2021 , 8, 4207	4.3	3
258	How Can the Electrode Influence the Formation of the Solid Electrolyte Interface?. <i>ACS Energy Letters</i> , 2021 , 6, 3307-3320	20.1	12

257	Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High-Performance Lithium/Sodium Storage. <i>Small</i> , 2021 , 17, e2102893		13
256	Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. <i>ACS Applied Materials & Description</i> (13), 38202-3827	2	5
255	Vertical Channels Design for Polymer Electrolyte to Enhance Mechanical Strength and Ion Conductivity. ACS Applied Materials & amp; Interfaces, 2021, 13, 42957-42965 9.5	į	3
254	Boosting Sodium Storage Performance of Hard Carbon Anodes by Pore Architecture Engineering. ACS Applied Materials & amp; Interfaces, 2021 , 13, 47671-47683	;	7
253	Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn-organic batteries. <i>Materials Horizons</i> , 2021 , 8, 3124-3132	·4	1
252	Boosting the ultrahigh initial coulombic efficiency of porous carbon anodes for sodium-ion batteries via in situ fabrication of a passivation interface. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 1078 6^{-3} 1	078	8
251	P-Doped Ni/NiO Heterostructured Yolk-Shell Nanospheres Encapsulated in Graphite for Enhanced Lithium Storage. <i>Small</i> , 2021 , e2105897		3
250	High Pseudocapacitance Boosts Ultrafast, High-Capacity Sodium Storage of 3D Graphene Foam-Encapsulated TiO Architecture. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 23939-23950 9.5	i	14
249	Electrocatalytic Interlayer with Fast Lithium Polysulfides Diffusion for Lithium Bulfur Batteries to Enhance Electrochemical Kinetics under Lean Electrolyte Conditions. <i>Advanced Functional Materials</i> , 15. 2020 , 30, 2000742	.6	48
248	Tuning Cobalt-Free Nickel-Rich Layered LiNi0.9Mn0.1O2 Cathode Material for Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2020 , 7, 2637-2642		8
247	Synthesis of Ni-Rich Cathode Material from Maleic Acid-Leachate of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 7839-7850		13
246	A Soft Lithiophilic Graphene Aerogel for Stable Lithium Metal Anode. <i>Advanced Functional Materials</i> , 2020 , 30, 2002013	.6	34
245	A Mixed Modified Layer Formed In Situ to Protect and Guide Lithium Plating/Stripping Behavior. ACS Applied Materials & Description of the Protect and Guide Lithium Plating/Stripping Behavior. 9.5	;	12
244	A leaf-like Al2O3-based quasi-solid electrolyte with a fast Li+ conductive interface for stable lithium metal anodes. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7280-7287		15
243	MOF-derived lithiophilic CuO nanorod arrays for stable lithium metal anodes. <i>Nanoscale</i> , 2020 , 12, 9416-9.4	22	19
242	Densely Packed 3D Corrugated Papery Electrodes as Polysulfide Reservoirs for Lithium B ulfur Battery with Ultrahigh Volumetric Capacity. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 5648-568		8
241	Fast Capacitive Energy Storage and Long Cycle Life in a Deintercalation-Intercalation Cathode Material. <i>Small</i> , 2020 , 16, e1906025		2
240	A High-Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li-S Batteries. <i>Advanced Materials</i> , 2020 , 32, e2002168		123

239	Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 13950-13958	9.5	20
238	Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li-S batteries. <i>Chemical Communications</i> , 2020 , 56, 3007-3010	5.8	25
237	Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. <i>Chemical Reviews</i> , 2020 , 120, 7020-7063	68.1	358
236	Dendrite-Free Lithium Anodes with a Metal Organic Framework-Derived Cake-like TiO2 Coating on the Separator. <i>ChemElectroChem</i> , 2020 , 7, 2159-2164	4.3	4
235	Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. <i>National Science Review</i> , 2020 , 7, 1367-1386	10.8	12
234	Cycling Performance and Kinetic Mechanism Analysis of a Li Metal Anode in Series-Concentrated Ether Electrolytes. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 8366-8375	9.5	10
233	A theoretical study on Na solvation in carbonate ester and ether solvents for sodium-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 2164-2175	3.6	17
232	A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 706-713	13	38
231	Microsphere-Like SiO /MXene Hybrid Material Enabling High Performance Anode for Lithium Ion Batteries. <i>Small</i> , 2020 , 16, e1905430	11	48
230	In situ formation of a LiF and LiAl alloy anode protected layer on a Li metal anode with enhanced cycle life. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1247-1253	13	31
229	Sodium-Ion Batteries: Toward Rapid-Charging Sodium-Ion Batteries using Hybrid-Phase Molybdenum Sulfide Selenide-Based Anodes (Adv. Mater. 40/2020). <i>Advanced Materials</i> , 2020 , 32, 2070	302	2
228	In situ formation of a Lißn alloy protected layer for inducing lateral growth of dendrites. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23574-23579	13	6
227	Co-Construction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2020 , 32, e2005802	24	100
226	Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries. <i>Waste Management</i> , 2020 , 114, 166-173	8.6	9
225	Rational Tuning of a LiSiO-Based Hybrid Interface with Unique Stepwise Prelithiation for Dendrite-Proof and High-Rate Lithium Anodes. <i>ACS Applied Materials & Description (Control of the Control of the</i>	- 39 371	15
224	Riveting Dislocation Motion: The Inspiring Role of Oxygen Vacancies in the Structural Stability of Ni-Rich Cathode Materials. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 37208-37217	9.5	27
223	Leaching Mechanisms of Recycling Valuable Metals from Spent Lithium-Ion Batteries by a Malonic Acid-Based Leaching System. <i>ACS Applied Energy Materials</i> , 2020 , 3, 8532-8542	6.1	23
222	Clean the Ni-Rich Cathode Material Surface With Boric Acid to Improve Its Storage Performance. <i>Frontiers in Chemistry</i> , 2020 , 8, 573	5	12

221	An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries. <i>Advanced Materials</i> , 2020 , 32, e2004017	24	42
220	Toward Rapid-Charging Sodium-Ion Batteries using Hybrid-Phase Molybdenum Sulfide Selenide-Based Anodes. <i>Advanced Materials</i> , 2020 , 32, e2003534	24	34
219	Advances and Prospects of Surface Modification on Nickel-Rich Materials for Lithium-Ion Batteries Chinese Journal of Chemistry, 2020 , 38, 1817-1831	4.9	11
218	A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 13527-13554	8.3	61
217	Electrolytes for Rechargeable Lithium-Air Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2974-2997	16.4	89
216	Elektrolyte filwiederaufladbare Lithium-Luft-Batterien. <i>Angewandte Chemie</i> , 2020 , 132, 2994-3019	3.6	12
215	Improved Stability of Layered and Porous Nickel-Rich Cathode Materials by Relieving the Accumulation of Inner Stress. <i>ChemSusChem</i> , 2020 , 13, 426-433	8.3	17
214	Recycling supercapacitor activated carbons for adsorption of silver (I) and chromium (VI) ions from aqueous solutions. <i>Chemosphere</i> , 2020 , 238, 124638	8.4	24
213	Recent progress on MOF-derived carbon materials for energy storage 2020 , 2, 176-202		76
212	CoS Nanorods as an Electrocatalyst To Enhance Polysulfide Conversion and Alleviate Passivation in		
	Li-S Batteries under Lean Electrolyte Conditions. ACS Applied Materials & District Lean Electrolyte Conditions. Dist	'01 ² 2 ⁵ 17	08 ¹²
211	Li-S Batteries under Lean Electrolyte Conditions. <i>ACS Applied Materials & Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Metals</i> , 2020 , 39, 1457-1463	701 ⁹ 2 ⁵ 170	25
	Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. <i>Rare</i>		
211	Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. <i>Rare Metals</i> , 2020 , 39, 1457-1463 Biochars preparation from waste sludge and composts under different carbonization conditions	5.5	25
211	Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. <i>Rare Metals</i> , 2020 , 39, 1457-1463 Biochars preparation from waste sludge and composts under different carbonization conditions and their Pb(II) adsorption behaviors. <i>Water Science and Technology</i> , 2019 , 80, 1063-1075 Effect of the Activation Process on the Microstructure and Electrochemical Properties of N-Doped	5·5 2.2	25 7
211 210 209	Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. <i>Rare Metals</i> , 2020 , 39, 1457-1463 Biochars preparation from waste sludge and composts under different carbonization conditions and their Pb(II) adsorption behaviors. <i>Water Science and Technology</i> , 2019 , 80, 1063-1075 Effect of the Activation Process on the Microstructure and Electrochemical Properties of N-Doped Carbon Cathodes in Li-O Batteries. <i>ACS Applied Materials & Description of Materials & Descrip</i>	5.5 2.2 9.5	25715
211 210 209 208	Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. <i>Rare Metals</i> , 2020 , 39, 1457-1463 Biochars preparation from waste sludge and composts under different carbonization conditions and their Pb(II) adsorption behaviors. <i>Water Science and Technology</i> , 2019 , 80, 1063-1075 Effect of the Activation Process on the Microstructure and Electrochemical Properties of N-Doped Carbon Cathodes in Li-O Batteries. <i>ACS Applied Materials & Description of Materials & Descrip</i>	5.5 2.2 9.5 8.3	2571549
211 210 209 208 207	Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. <i>Rare Metals</i> , 2020, 39, 1457-1463 Biochars preparation from waste sludge and composts under different carbonization conditions and their Pb(II) adsorption behaviors. <i>Water Science and Technology</i> , 2019, 80, 1063-1075 Effect of the Activation Process on the Microstructure and Electrochemical Properties of N-Doped Carbon Cathodes in Li-O Batteries. <i>ACS Applied Materials & Description of Materials</i> , 2019, 11, 34997-35004 Low-Temperature Molten-Salt-Assisted Recovery of Valuable Metals from Spent Lithium-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2019, 7, 16144-16150 An MXene/CNTs@P nanohybrid with stable TiDP bonds for enhanced lithium ion storage. <i>Journal of Materials Chemistry A</i> , 2019, 7, 21766-21773 Maleic, glycolic and acetoacetic acids-leaching for recovery of valuable metals from spent lithium-ion batteries: leaching parameters, thermodynamics and kinetics. <i>Royal Society Open</i>	5.5 2.2 9.5 8.3	25 7 15 49 45

203	A green and effective room-temperature recycling process of LiFePO cathode materials for lithium-ion batteries. <i>Waste Management</i> , 2019 , 85, 437-444	8.6	50
202	A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1315-1322	13	63
201	CF@rGO/PPy-S Hybrid Foam with Paper Window-like Microstructure as Freestanding and Flexible Cathode for the LithiumBulfur Battery. <i>ACS Applied Energy Materials</i> , 2019 , 2, 4151-4158	6.1	10
200	Stable Conversion Mn3O4 Li-Ion Battery Anode Material with Integrated Hierarchical and CoreBhell Structure. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5206-5213	6.1	9
199	Vanadium Organometallics as an Interfacial Stabilizer for Ca VO/Vanadyl Acetylacetonate Hybrid Nanocomposite with Enhanced Energy Density and Power Rate for Full Lithium-Ion Batteries. <i>ACS Applied Materials & Description</i> (2018), 11, 23291-23302	9.5	9
198	Nature-Inspired, Graphene-Wrapped 3D MoS Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 22323-22331	9.5	64
197	Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via In Situ Polymerization Coating. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 22339-22345	9.5	44
196	Freestanding N-Doped Carbon Coated CuO Array Anode for Lithium-Ion and Sodium-Ion Batteries. <i>Energy Technology</i> , 2019 , 7, 1900252	3.5	5
195	Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc-Air Batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2019 , 11, 15537-15542	9.5	53
194	Hand-in-Hand Reinforced rGO Film Used as an Auxiliary Functional Layer for High-Performance Li-S Batteries. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 11, 12544-12553	9.5	27
193	In situ generated spinel-phase skin on layered Li-rich short nanorods as cathode materials for lithium-ion batteries. <i>Journal of Materials Science</i> , 2019 , 54, 9098-9110	4.3	10
192	A Li+ conductive metal organic framework electrolyte boosts the high-temperature performance of dendrite-free lithium batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9530-9536	13	57
191	Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application. <i>Advanced Materials</i> , 2019 , 31, e1808393	24	141
190	An Ionic Liquid/Poly(vinylidene fluoride-co-hexafluoropropylene) Gel-Polymer Electrolyte with a Compatible Interface for Sodium-Based Batteries. <i>ChemElectroChem</i> , 2019 , 6, 2423-2429	4.3	12
189	Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 12554-12561	9.5	84
188	Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11205-11213	13	39
187	Anode Interface Engineering and Architecture Design for High-Performance Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2019 , 31, e1806532	24	109
186	Hollow NaTi1.9Sn0.1(PO4)3@C Nanoparticles for Anodes of Sodium-Ion Batteries with Superior Rate and Cycling Properties. <i>Energy Technology</i> , 2019 , 7, 1900079	3.5	5

185	Electrostatic Self-assembly of 0D-2D SnO Quantum Dots/TiCT MXene Hybrids as Anode for Lithium-Ion Batteries. <i>Nano-Micro Letters</i> , 2019 , 11, 65	19.5	83
184	Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0.8Co0.1Mn0.1O2/LiFePO4 hybrid solid batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20633-20639	13	25
183	Inhibition of Crystallization of Poly(ethylene oxide) by Ionic Liquid: Insight into Plasticizing Mechanism and Application for Solid-State Sodium Ion Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 43252-43260	9.5	31
182	Lithium-Ion Batteries: Inducing Favorable Cation Antisite by Doping Halogen in Ni-Rich Layered Cathode with Ultrahigh Stability (Adv. Sci. 4/2019). <i>Advanced Science</i> , 2019 , 6, 1970021	13.6	3
181	Paving the Path toward Reliable Cathode Materials for Aluminum-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1806510	24	138
180	Effects of a High-Concentration LiPF6-Based Carbonate Ester Electrolyte for the Electrochemical Performance of a High-Voltage Layered LiNi0.6Co0.2Mn0.2O2 Cathode. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8878-8884	6.1	12
179	Confined Growth of Nano-NaV(PO) in Porous Carbon Framework for High-Rate Na-Ion Storage. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Ap</i>	9.5	31
178	Use of Ce to Reinforce the Interface of Ni-Rich LiNi Co Mn O Cathode Materials for Lithium-Ion Batteries under High Operating Voltage. <i>ChemSusChem</i> , 2019 , 12, 935-943	8.3	71
177	Carbon Nanofiber Elastically Confined Nanoflowers: A Highly Efficient Design for Molybdenum Disulfide-Based Flexible Anodes Toward Fast Sodium Storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 5183-5192	9.5	34
176	Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. <i>Nature Communications</i> , 2019 , 10, 73	17.4	169
175	Sufficient Utilization of Zirconium Ions to Improve the Structure and Surface properties of Nickel-Rich Cathode Materials for Lithium-Ion Batteries. <i>ChemSusChem</i> , 2018 , 11, 1639-1648	8.3	83
174	Insights into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes. <i>Advanced Energy Materials</i> , 2018 , 8, 1702781	21.8	124
173	Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective. Journal of Physical Chemistry Letters, 2018 , 9, 1398-1414	6.4	43
172	Strongly Coupled Carbon Nanosheets/Molybdenum Carbide Nanocluster Hollow Nanospheres for High-Performance Aprotic Li-O Battery. <i>Small</i> , 2018 , 14, e1704366	11	28
171	Boosting Fast Sodium Storage of a Large-Scalable Carbon Anode with an Ultralong Cycle Life. <i>Advanced Energy Materials</i> , 2018 , 8, 1703159	21.8	90
170	3D Electronic Channels Wrapped Large-Sized Na V (PO) as Flexible Electrode for Sodium-Ion Batteries. <i>Small</i> , 2018 , 14, e1702864	11	83
169	Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium-Sulfur Batteries. <i>ACS Applied Materials & District Aces</i> , 2018, 10, 10882-1088	3 9 .5	25
168	Innovative Application of Acid Leaching to Regenerate Li(Ni1/3Co1/3Mn1/3)O2 Cathodes from Spent Lithium-lon Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5959-5968	8.3	86

167	Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6959-6966	13	51
166	Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 25659-25667	5.1	50
165	Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. <i>Nano Research</i> , 2018 , 11, 1563-1574	10	23
164	Expanding Interlayer Spacing of Hard Carbon by Natural K Doping to Boost Na-Ion Storage. <i>ACS Applied Materials & Doping Land Carbon Storage</i> . <i>ACS Applied Materials & Doping Land Carbon Storage</i> . <i>ACS Applied Materials & Doping Land Carbon Storage</i> . <i>ACS Applied Materials & Doping Land Carbon Storage</i> .	9.5	64
163	Selective Recovery of Li and Fe from Spent Lithium-Ion Batteries by an Environmentally Friendly Mechanochemical Approach. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11029-11035	8.3	73
162	Development and Challenges of Functional Electrolytes for High-Performance LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1800919	15.6	98
161	New Application of Waste Citrus Maxima Peel-Derived Carbon as an Oxygen Electrode Material for Lithium Oxygen Batteries. <i>ACS Applied Materials & District M</i>	9.5	21
160	Sodium Ion Batteries: Stable CarbonBelenium Bonds for Enhanced Performance in Tremella-Like 2D Chalcogenide Battery Anode (Adv. Energy Mater. 23/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 187	0768	9
159	Phosphorus-Doped Hard Carbon Nanofibers Prepared by Electrospinning as an Anode in Sodium-Ion Batteries. <i>ACS Applied Materials & Dope Materia</i>	9.5	119
158	A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries. <i>Small</i> , 2018 , 14, e1801246	11	70
157	Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. Journal of Materials Chemistry A, 2018 , 6, 12559-12564	13	62
156	Stable CarbonBelenium Bonds for Enhanced Performance in Tremella-Like 2D Chalcogenide Battery Anode. <i>Advanced Energy Materials</i> , 2018 , 8, 1800927	21.8	52
155	Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. <i>Waste Management</i> , 2018 , 71, 362-371	8.6	163
154	Toward Mechanically Stable Silicon-Based Anodes Using Si/SiO @C Hierarchical Structures with Well-Controlled Internal Buffer Voids. <i>ACS Applied Materials & Discrete Materials &</i>	9.5	17
153	The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. Electrochemical Energy Reviews, 2018 , 1, 461-482	29.3	131
152	Tuning Microstructures of Graphene to Improve Power Capability of Rechargeable Hybrid Aqueous Batteries. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	13
151	Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Long-Life Rechargeable Lithium-CO Batteries. <i>Advanced Materials</i> , 2018 , 30, e1803124	24	89
150	Chemical Synthesis of K2S2 and K2S3 for Probing Electrochemical Mechanisms in KB Batteries. <i>ACS Energy Letters</i> , 2018 , 3, 2858-2864	20.1	47

149	Compound-Hierarchical-Sphere LiNiCoMnO: Synthesis, Structure, and Electrochemical Characterization. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 32120-32127	9.5	18	
148	Self-Nitrogen-Doped Carbon from Plant Waste as an Oxygen Electrode Material with Exceptional Capacity and Cycling Stability for Lithium-Oxygen Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 32212-32219	9.5	27	
147	Flexible TiO /SiO /C Film Anodes for Lithium-Ion Batteries. <i>ChemSusChem</i> , 2018 , 11, 2040-2044	8.3	24	
146	Electrochemical Properties of the LiNiCoMnO Cathode Material Modified by Lithium Tungstate under High Voltage. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 19704-19711	9.5	45	
145	Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II). <i>Science of the Total Environment</i> , 2018 , 640-641, 73-79	10.2	55	
144	Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes. <i>RSC Advances</i> , 2017 , 7, 5519-5527	3.7	40	
143	Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5142-5147	13	25	
142	Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film anodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5532-5540	13	28	
141	Enhanced Electrochemical Performance of Layered Lithium-Rich Cathode Materials by Constructing Spinel-Structure Skin and Ferric Oxide Islands. <i>ACS Applied Materials & District Research</i> , 2017, 9, 8669-867	78 ^{.5}	42	
140	Synergistic Effects of Stabilizing the Surface Structure and Lowering the Interface Resistance in Improving the Low-Temperature Performances of Layered Lithium-Rich Materials. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	29	
139	Multilayered Electride CaN Electrode via Compression Molding Fabrication for Sodium Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs Ap</i>	9.5	36	
138	Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes. <i>ACS Applied Materials & Description</i> (2017), 9, 7003-7008	9.5	56	
137	Toward Practical High-Energy Batteries: A Modular-Assembled Oval-Like Carbon Microstructure for Thick Sulfur Electrodes. <i>Advanced Materials</i> , 2017 , 29, 1700598	24	82	
136	Open-Structured V2O5IhH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1602720	21.8	91	
135	Microorganism-moulded pomegranate-like Na3V2(PO4)3/C nanocomposite for advanced sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9982-9990	13	40	
134	Building an Electronic Bridge via Ag Decoration To Enhance Kinetics of Iron Fluoride Cathode in Lithium-Ion Batteries. <i>ACS Applied Materials & Enhances</i> , 2017 , 9, 19852-19860	9.5	37	
133	Ultralong Cycle Life Achieved by a Natural Plant: Miscanthus Igiganteus for Lithium Oxygen Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 9, 4382-4390	9.5	19	
132	Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodium-Ion Battery. <i>ChemSusChem</i> , 2017 , 10, 786-796	8.3	33	

131	Micrometer-Sized RuO2 Catalysts Contributing to Formation of Amorphous Na-Deficient Sodium Peroxide in NaD2 Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1700632	15.6	24
130	Does heavy metal hurt in the secondary battery production sites? The case study of occupational risk from Yangtze River Delta, China. <i>Human and Ecological Risk Assessment (HERA)</i> , 2017 , 23, 1285-129	94.9	
129	Energy Storage: Polyanion-Type Electrode Materials for Sodium-Ion Batteries (Adv. Sci. 3/2017). <i>Advanced Science</i> , 2017 , 4,	13.6	1
128	Enhanced hydrogen generation by solid-state thermal decomposition of NaNH2NaBH4 composite promoted with MgtoB catalyst. <i>Journal of Materials Research</i> , 2017 , 32, 1203-1209	2.5	6
127	Nature-Inspired NaTiO Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 11669-11677	9.5	79
126	3D Reticular LiNiMnO Cathode Material for Lithium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 1516-1523	9.5	32
125	The positive role of (NH4)3AlF6 coating on Li[Li0.2Ni0.2Mn0.6]O2 oxide as the cathode material for lithium-ion batteries. <i>RSC Advances</i> , 2017 , 7, 1191-1199	3.7	11
124	Quick Activation of Nanoporous Anatase TiO as High-Rate and Durable Anode Materials for Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 39432-39440	9.5	48
123	An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24292-24298	13	46
122	Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24677-24685	13	25
121	Turning Waste Chemicals into Wealth-A New Approach To Synthesize Efficient Cathode Material for an Li-O Battery. <i>ACS Applied Materials & Englishing Company Systems</i> (1997) 1912	9.5	17
120	Metal-Ion Batteries: Open-Structured V2O5[hH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries (Adv. Energy Mater. 14/2017). <i>Advanced Energy Materials</i> , 2017 , 7,	21.8	15
119	Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH-NaBH Hydrogen Storage Composite. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 31977-31984	9.5	14
118	Ni-Rich LiNiCoMnO Oxide Coated by Dual-Conductive Layers as High Performance Cathode Material for Lithium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 1, 9, 29732-29743	9.5	224
117	A three-dimensional hierarchical structure of cyclized-PAN/Si/Ni for mechanically stable silicon anodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24667-24676	13	24
116	A three-dimensional network structure Si/C anode for Li-ion batteries. <i>Journal of Materials Science</i> , 2017 , 52, 10950-10958	4.3	17
115	Insight on lithium polysulfide intermediates in a Li/S battery by density functional theory. <i>RSC Advances</i> , 2017 , 7, 33373-33377	3.7	18
114	Preparation of MnO-Modified Graphite Sorbents from Spent Li-Ion Batteries for the Treatment of Water Contaminated by Lead, Cadmium, and Silver. <i>ACS Applied Materials & Description</i> (2017), 9, 25.	3 <i>6</i> 9 ⁵ 25	- 3 7 8

(2016-2017)

113	Reorganizing electronic structure of Li3V2(PO4)3 using polyanion (BO3)3[Itowards better electrochemical performances. <i>Rare Metals</i> , 2017 , 36, 397-402	5.5	11
112	Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. <i>Energy and Environmental Science</i> , 2017 , 10, 1660-1667	35.4	157
111	Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries. <i>Nano Research</i> , 2017 , 10, 426-436	10	37
110	Gluing Carbon Black and Sulfur at Nanoscale: A Polydopamine-Based Nano-Binder For Double-Shelled Sulfur Cathodes. <i>Advanced Energy Materials</i> , 2017 , 7, 1601591	21.8	57
109	Platinum-Coated Hollow Graphene Nanocages as Cathode Used in Lithium-Oxygen Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 7626-7633	15.6	75
108	Surface Modification of Li-Rich Cathode Materials for Lithium-Ion Batteries with a PEDOT:PSS Conducting Polymer. <i>ACS Applied Materials & Discrete Sump; Interfaces</i> , 2016 , 8, 23095-104	9.5	91
107	Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li-O2 Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> Facility 100 (1997) 100 (19	9.5	65
106	The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. <i>Materials Horizons</i> , 2016 , 3, 487-516	14.4	414
105	3D-0D Graphene-FeO Quantum Dot Hybrids as High-Performance Anode Materials for Sodium-Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	125
104	Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 31669-31676	9.5	102
103	Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes. <i>Nature Communications</i> , 2016 , 7, 11774	17.4	124
102	ECyclodextrin coated lithium vanadium phosphate as novel cathode material for lithium ion batteries. <i>RSC Advances</i> , 2016 , 6, 103364-103371	3.7	5
101	An Effectively Activated Hierarchical Nano-/Microspherical Li1.2Ni0.2Mn0.6O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries. <i>ChemSusChem</i> , 2016 , 9, 728-35	8.3	52
100	Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 16078-86	9.5	71
99	liquid-in-Solidland Bolid-in-Liquidlelectrolytes with High Rate Capacity and Long Cycling Life for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2016 , 28, 848-856	9.6	78
98	A novel synthesis of gadolinium-doped Li3V2(PO4)3/C with excellent rate capacity and cyclability. <i>RSC Advances</i> , 2016 , 6, 28624-28632	3.7	9
97	Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5942-5951	13	89
96	Mg-Enriched Engineered Carbon from Lithium-Ion Battery Anode for Phosphate Removal. <i>ACS Applied Materials & Distriction (Control of the Control of the Cont</i>	9.5	33

95	Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. <i>Nano Letters</i> , 2016 , 16, 1960-8	11.5	103
94	Enhanced Sodium Ion Storage Behavior of P2-Type Na(2/3)Fe(1/2)Mn(1/2)O2 Synthesized via a Chelating Agent Assisted Route. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 2857-65	9.5	97
93	High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li(+) Diffusion Pathway. <i>ACS Applied Materials & Diffusion Pathway</i> . 8, 582-7	9.5	86
92	High-Rate, Durable Sodium-Ion Battery Cathode Enabled by Carbon-Coated Micro-Sized Na3V2(PO4)3 Particles with Interconnected Vertical Nanowalls. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500740	4.6	39
91	Hierarchical Mesoporous Lithium-Rich Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material Synthesized via Ice Templating for Lithium-Ion Battery. <i>ACS Applied Materials & Discrete Materials &</i>	9.5	74
90	Synthesis of Mg-Decorated Carbon Nanocomposites from MesoCarbon MicroBeads (MCMB) Graphite: Application for Wastewater Treatment. <i>ACS Omega</i> , 2016 , 1, 417-423	3.9	15
89	Suppression of lithium dendrite growth by introducing a low reduction potential complex cation in the electrolyte. <i>RSC Advances</i> , 2016 , 6, 51738-51746	3.7	18
88	Na-Rich NaVNi(PO)/C for Sodium Ion Batteries: Controlling the Doping Site and Improving the Electrochemical Performances. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 27779-27787	9.5	81
87	Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17033-17041	13	61
86	High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery. <i>ACS Applied Materials & Discreta (Samp; Interfaces, 2016, 8, 27444-27448)</i>	9.5	89
85	Highly Safe Ionic Liquid Electrolytes for Sodium-Ion Battery: Wide Electrochemical Window and Good Thermal Stability. <i>ACS Applied Materials & District Research</i> , 8, 21381-6	9.5	69
84	Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2016 , 16, 5488-94	11.5	88
83	Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment. <i>ACS Applied Materials & Discourse (Magnesium)</i> 1, 21315-25	9.5	58
82	A floral variant of mesoporous carbon as an anode material for high performance sodium and lithium ion batteries. <i>RSC Advances</i> , 2016 , 6, 78235-78240	3.7	12
81	Stabilization of Sulfur Cathode with Poly-peri-naphthalene for High Electrochemical Performance. Journal of Materials Engineering and Performance, 2015 , 24, 946-951	1.6	2
80	Modified disordered carbon prepared from 3,4,9,10-perylenetetracarboxylic dianhydride as an anode material for Li-ion batteries. <i>International Journal of Minerals, Metallurgy and Materials</i> , 2015 , 22, 203-209	3.1	2
79	Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9578-9586	13	197
78	Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries. <i>ACS Applied Materials & Discourt American</i> (1998) 17910-8	9.5	31

(2015-2015)

77	Hierarchical mesoporous/macroporous Co3O4 ultrathin nanosheets as free-standing catalysts for rechargeable lithiumBxygen batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17620-17626	13	47
76	Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 15098-107	9.5	48
75	Effect of Ni(2+) content on lithium/nickel disorder for Ni-rich cathode materials. <i>ACS Applied Materials & Discourse (Content of Nickel disorder for Ni-rich cathode materials (Content of Nickel disorder for Ni-rich cathode materials). ACS Applied Materials & Discourse (Content of Nickel disorder for Ni-rich cathode materials). ACS Applied Materials & Discourse (Content of Ni-rich cathode materials). ACS Applied Materials & Discourse (Content of Ni-rich cathode materials). ACS Applied Materials (Content of Ni-rich cathode materials). (Content of </i>	9.5	223
74	Engineered biochar from biofuel residue: characterization and its silver removal potential. <i>ACS Applied Materials & Applied & Applied Materials & Applied &</i>	9.5	75
73	In Situ Analysis of Gas Generation in Lithium-Ion Batteries with Different Carbonate-Based Electrolytes. <i>ACS Applied Materials & Different Carbonate Samp; Interfaces</i> , 2015 , 7, 22751-5	9.5	52
72	Ring-chain synergy in ionic liquid electrolytes for lithium batteries. <i>Chemical Science</i> , 2015 , 6, 7274-7283	9.4	18
71	Structural and Electrochemical Study of Hierarchical LiNi(1/3)Co(1/3)Mn(1/3)O2 Cathode Material for Lithium-Ion Batteries. <i>ACS Applied Materials & Empty Interfaces</i> , 2015 , 7, 21939-47	9.5	81
70	Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22677-22686	13	129
69	Systematic Effect for an Ultralong Cycle Lithium-Sulfur Battery. <i>Nano Letters</i> , 2015 , 15, 7431-9	11.5	98
68	A polypyrrole-supported carbon paper acting as a polysulfide trap for lithiumBulfur batteries. <i>RSC Advances</i> , 2015 , 5, 94479-94485	3.7	18
67	Novel Slurry Electrolyte Containing Lithium Metasilicate for High Electrochemical Performance of a 5 V Cathode. <i>ACS Applied Materials & District Materials </i>	9.5	6
66	Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries. <i>ACS Applied Materials & District Material</i>	9.5	168
65	3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. <i>Scientific Reports</i> , 2015 , 5, 13340	4.9	96
64	Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries. <i>ChemSusChem</i> , 2015 , 8, 4073-80	8.3	32
63	Lithium-Rich Nanoscale Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material Prepared by Co-Precipitation Combined Freeze Drying (CPBD) for Lithium-Ion Batteries. <i>Energy Technology</i> , 2015 , 3, 843-850	3.5	37
62	A facile approach of introducing DMS into LiODFBPYR14TFSI electrolyte for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6366-6372	13	15
61	Surface modification of a cobalt-free layered Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 oxide with the FePO4/Li3PO4 composite as the cathode for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9528-9537	13	31
60	Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 3773-81	9.5	160

59	Effect of lithium carbonate precipitates on the electrochemical cycling stability of LiCoO2 cathodes at a high voltage. <i>RSC Advances</i> , 2014 , 4, 10196	3.7	24
58	Electrospun composite of ZnO/Cu nanocrystals-implanted carbon fibers as an anode material with high rate capability for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4309	13	44
57	New synthesis of a Foamlike Fe3O4/C composite via a self-expanding process and its electrochemical performance as anode material for lithium-ion batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 19254-64	9.5	47
56	Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. <i>Nano Letters</i> , 2014 , 14, 3550-5	11.5	197
55	Application prospects of high-voltage cathode materials in all-solid-state lithium-ion batteries. <i>Science Bulletin</i> , 2014 , 59, 1950-1963		8
54	New secondary batteries and their key materials based on the concept of multi-electron reaction. <i>Science Bulletin</i> , 2014 , 59, 3369-3376		26
53	Stable nanostructured cathode with polycrystalline Li-deficient Li0.28Co0.29Ni0.30Mn0.20O2 for lithium-ion batteries. <i>Nano Letters</i> , 2014 , 14, 1281-7	11.5	33
52	An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> ACS Applied Materials & Discourse (Materials & Discourse) ACS Applied (Materials & Discourse) ACS Applied (Materials & Discourse) ACS Applied (Materials & Discourse) ACS ACS APPLIED (Materials & Discourse) ACS	9.5	143
51	Influences of Ni-Co-B catalyst on the thermal decomposition of light-weight NaNH2-NaBH4 hydrogen storage material. <i>Journal of Renewable and Sustainable Energy</i> , 2014 , 6, 023108	2.5	5
50	Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 245, 730-738	8.9	17
49	The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9760	13	94
48	Methods for promoting electrochemical properties of LiNil/3Col/3Mnl/3O2 for lithium-ion batteries. <i>Science Bulletin</i> , 2013 , 58, 1869-1875		5
47	Progression of the silicate cathode materials used in lithium ion batteries. <i>Science Bulletin</i> , 2013 , 58, 575-584		12
46	Optimization of electrolyte conductivity for Li-ion batteries based on mass triangle model. <i>Chemical Research in Chinese Universities</i> , 2013 , 29, 116-120	2.2	
45	Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 811-816	2.6	18
44	High performance FeFx/C composites as cathode materials for lithium-ion batteries. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 021402	2.5	16
43	A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalate)borate for lithium batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3659	13	33
42	Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries. <i>ChemSusChem</i> , 2013 , 6, 1438-44	8.3	49

(2010-2013)

41	Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. <i>Advanced Materials</i> , 2013 , 25, 3722-6	24	222
40	High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. Journal of Power Sources, 2013 , 233, 115-120	8.9	79
39	High capacity cobalt boride prepared via vacuum freeze-drying method and used as anode material for alkaline secondary battery. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 021401	2.5	6
38	Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 202, 322-331	8.9	38
37	Preparation and performance of novel LLTO thin film electrolytes for thin film lithium batteries. <i>Science Bulletin</i> , 2012 , 57, 4199-4204		11
36	Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19088		331
35	Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1489-1497		87
34	Preparation and electrochemical properties of re-synthesized LiCoO2 from spent lithium-ion batteries. <i>Science Bulletin</i> , 2012 , 57, 4188-4194		24
33	Lithium ir and lithium opper batteries based on a polymer stabilized interface between two immiscible electrolytic solutions (ITIES). New Journal of Chemistry, 2012, 36, 2140	3.6	5
32	Thermal behavior of nickelthetal hydride battery during charging at a wide range of ambient temperatures. <i>Journal of Thermal Analysis and Calorimetry</i> , 2011 , 105, 383-388	4.1	9
31	Nanostructure and formation mechanism of Pt-WO3/C nanocatalyst by ethylene glycol method. Journal Wuhan University of Technology, Materials Science Edition, 2011 , 26, 377-383	1	4
30	Novel solid-state Li/LiFePOlbattery configuration with a ternary nanocomposite electrolyte for practical applications. <i>Advanced Materials</i> , 2011 , 23, 5081-5	24	95
29	Capacitive Energy Storage on Fe/Li3PO4 Grain Boundaries. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 3803-3808	3.8	37
28	Improvement of Rate and Cycle Performence by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24411-24417	3.8	162
27	Electrochemical performance and kinetics of LiFePO4/C cathode in a low-temperature electrolyte. <i>World Electric Vehicle Journal</i> , 2010 , 4, 396-399	2.5	
26	The StructureActivity Relationship and Physicochemical Properties of Acetamide-Based Bristed Acid Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 20007-20015	3.8	12
25	Preparation and characterization of Pt-WO3/C catalysts for direct ethanol fuel cells. <i>Rare Metals</i> , 2010 , 29, 255-260	5.5	10
24	Improvement of the electrochemical performance of LiNi0.33Mn0.33Co0.33O2 cathode material by chromium doping. <i>Science China Technological Sciences</i> , 2010 , 53, 3214-3220	3.5	1

23	Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries. <i>Journal of Applied Electrochemistry</i> , 2010 , 40, 783-789	2.6	70
22	Synthesis and characteristics of a silicon-containing polymer, manufacture of an electrolyte membrane from the polymer and poly(vinylidene fluoride-co-hexafluoropropene), and property testing of the membrane. <i>Journal of Applied Polymer Science</i> , 2009 , 114, 1086-1093	2.9	3
21	Modification of LiCo1/3Ni1/3Mn1/3O2 cathode material by CeO2-coating. <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 2737-2741		19
20	Thermal behavior simulation of Ni/MH battery. <i>Science Bulletin</i> , 2009 , 54, 1500-1506	10.6	4
19	Research on catalysis of sodium-metallochlorophylls in Ni/MH battery. <i>Science Bulletin</i> , 2009 , 54, 3005-3	3013	
18	Electrochemical Behavior of Fe(VI)-Fe(III) System in Concentrated NaOH Solution. <i>ACS Symposium Series</i> , 2008 , 81-93	0.4	2
17	Preparation and evaluation of two kinds of solid polymer electrolytes made from crosslinked poly(ether urethane) elastomers consisting of a comb-like and a hyperbranched polyether. <i>Journal of Applied Polymer Science</i> , 2008 , 109, 1955-1961	2.9	1
16	Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries. <i>Journal of Power Sources</i> , 2007 , 172, 395-403	8.9	70
15	Synthesis of copolymers of 3-acryloyloxymethyl-3?-methyloxetane and 3-(2-(2-(2-methoxyethylenoxy)ethylenoxy)ethylenoxy)-3?-methyloxetane and their ionic conductivity properties. <i>Frontiers of Chemical Engineering in China</i> , 2007 , 1, 343-348		2
14	Hydrogen Generation from Ethanol Steam Reforming over Rare Earth Promoted Nickel-based Catalysts 2007 ,		1
13	Synthesis and characterization of homo- and copolymers of 3-(2-cyano ethoxy)methyl- and 3-[methoxy(triethylenoxy)]methyl-3?-methyl-oxetane. <i>Polymer International</i> , 2005 , 54, 1440-1448	3.3	15
12	New Binary Room-Temperature Molten Salt Electrolyte Based on Urea and LiTFSI. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 9966-9969	3.4	66
11	Enhanced Electrochemical Performance of Ni-Rich Cathode Materials with an In Situ-Formed LiBO2/B2O3 Hybrid Coating Layer. <i>ACS Applied Energy Materials</i> ,	6.1	3
10	Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery		9
9	Recycling of Rechargeable Batteries: Insights from a Bibliometrics-Based Analysis of Emerging Publishing and Research Trends. <i>Advanced Energy and Sustainability Research</i> ,2100153	1.6	О
8	Sustainable Recycling of Cathode Scrap towards High-Performance Anode Materials for Li-Ion Batteries. <i>Advanced Energy Materials</i> ,2103288	21.8	4
7	Study on the Interfacial Mechanism of Bisalt Polyether Electrolyte for Lithium Metal Batteries. <i>Advanced Functional Materials</i> ,2109184	15.6	2
6	An Ion-Dipole-Reinforced Polyether Electrolyte with Ion-Solvation Cages Enabling High Voltage-Tolerant and Ion-Conductive Solid-State Lithium Metal Batteries. <i>Advanced Functional Materials</i> ,2107764	15.6	7

LIST OF PUBLICATIONS

5	Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries. <i>Nano Research</i> ,1	10	О
4	In situ-formed flexible three-dimensional honeycomb-like film for a LiF/Li3N-enriched hybrid organicIhorganic interphase on the Li metal anode. <i>Materials Chemistry Frontiers</i> ,	7.8	3
3	High-Lithiophilicity Host with Micro/Nanostructured Active Sites based on Wenzel Wetting Model for Dendrite-Free Lithium Metal Anodes. <i>Advanced Functional Materials</i> ,2106676	15.6	7
2	8.5 im m-Thick Flexible-Rigid Hybrid Solid Electrolyte/Lithium Integration for Air-Stable and Interface-Compatible All-Solid-State Lithium Metal Batteries. <i>Advanced Energy Materials</i> , 2200368	21.8	5
1	2D Amorphous Mo-Doped CoB for Bidirectional Sulfur Catalysis in Lithium Sulfur Batteries. <i>Advanced Functional Materials</i> ,2202766	15.6	3