List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8858660/publications.pdf Version: 2024-02-01

		5268	14759
321	21,562	83	127
papers	citations	h-index	g-index
225	225	225	15000
325	325	325	15092
all docs	docs citations	times ranked	citing authors

FENC WU

#	Article	IF	CITATIONS
1	Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, 2020, 120, 7020-7063.	47.7	957
2	The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016, 3, 487-516.	12.2	592
3	Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. Journal of Materials Chemistry, 2012, 22, 19088.	6.7	373
4	Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Oxide Coated by Dual-Conductive Layers as High Performance Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 29732-29743.	8.0	309
5	Ultrathin Surface Coating of Nitrogenâ€Doped Graphene Enables Stable Zinc Anodes for Aqueous Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2101649.	21.0	302
6	Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nature Communications, 2019, 10, 73.	12.8	291
7	Effect of Ni ²⁺ Content on Lithium/Nickel Disorder for Ni-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2015, 7, 7702-7708.	8.0	287
8	A Highâ€Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li–S Batteries. Advanced Materials, 2020, 32, e2002168.	21.0	281
9	Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Management, 2018, 71, 362-371.	7.4	267
10	Electrolytes and Electrolyte/Electrode Interfaces in Sodiumâ€Ion Batteries: From Scientific Research to Practical Application. Advanced Materials, 2019, 31, e1808393.	21.0	264
11	Spinel/Layered Heterostructured Cathode Material for Highâ€Capacity and Highâ€Rate Liâ€Ion Batteries. Advanced Materials, 2013, 25, 3722-3726.	21.0	249
12	Coâ€Construction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2005802.	21.0	244
13	Effects of Mg doping on the remarkably enhanced electrochemical performance of Na ₃ V ₂ (PO ₄) ₃ cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 9578-9586.	10.3	236
14	Ultrathin Spinel Membrane-Encapsulated Layered Lithium-Rich Cathode Material for Advanced Li-Ion Batteries. Nano Letters, 2014, 14, 3550-3555.	9.1	227
15	The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. Electrochemical Energy Reviews, 2018, 1, 461-482.	25.5	215
16	Paving the Path toward Reliable Cathode Materials for Aluminumâ€lon Batteries. Advanced Materials, 2019, 31, e1806510.	21.0	214
17	Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy and Environmental Science, 2017, 10, 1660-1667.	30.8	211
18	Recent progress on MOFâ€derived carbon materials for energy storage. , 2020, 2, 176-202.		198

#	Article	IF	CITATIONS
19	Multifunctional AlPO ₄ Coating for Improving Electrochemical Properties of Low-Cost Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 3773-3781.	8.0	189
20	Electrolytes for Rechargeable Lithium–Air Batteries. Angewandte Chemie - International Edition, 2020, 59, 2974-2997.	13.8	187
21	Ether-based electrolytes for sodium ion batteries. Chemical Society Reviews, 2022, 51, 4484-4536.	38.1	187
22	Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27124-27130.	8.0	185
23	Selfâ€Assembly of 0D–2D Heterostructure Electrocatalyst from MOF and MXene for Boosted Lithium Polysulfide Conversion Reaction. Advanced Materials, 2021, 33, e2101204.	21.0	183
24	High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. Electrochemical Energy Reviews, 2021, 4, 382-446.	25.5	181
25	A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 13527-13554.	6.7	179
26	Improvement of Rate and Cycle Performence by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode. Journal of Physical Chemistry C, 2011, 115, 24411-24417.	3.1	172
27	Anode Interface Engineering and Architecture Design for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1806532.	21.0	172
28	Insights into the Na ⁺ Storage Mechanism of Phosphorusâ€Functionalized Hard Carbon as Ultrahigh Capacity Anodes. Advanced Energy Materials, 2018, 8, 1702781.	19.5	170
29	Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. Journal of Materials Chemistry A, 2015, 3, 22677-22686.	10.3	165
30	Phosphorus-Doped Hard Carbon Nanofibers Prepared by Electrospinning as an Anode in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 21335-21342.	8.0	164
31	An Effective Approach To Protect Lithium Anode and Improve Cycle Performance for Li–S Batteries. ACS Applied Materials & Interfaces, 2014, 6, 15542-15549.	8.0	157
32	Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Znâ€Ion Batteries. Advanced Materials, 2022, 34, e2106897.	21.0	153
33	3D-0D Graphene-Fe ₃ O ₄ Quantum Dot Hybrids as High-Performance Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 26878-26885.	8.0	152
34	Selective Recovery of Li and Fe from Spent Lithium-Ion Batteries by an Environmentally Friendly Mechanochemical Approach. ACS Sustainable Chemistry and Engineering, 2018, 6, 11029-11035.	6.7	152
35	Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Longâ€Life Rechargeable Lithium–CO ₂ Batteries. Advanced Materials, 2018, 30, e1803124.	21.0	144
36	Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nature Communications, 2016, 7, 11774.	12.8	143

#	Article	IF	CITATIONS
37	Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Nano-Micro Letters, 2021, 13, 203.	27.0	143
38	Innovative Application of Acid Leaching to Regenerate Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ Cathodes from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 5959-5968.	6.7	140
39	Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 31669-31676.	8.0	139
40	Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes. Advanced Materials, 2021, 33, e2008810.	21.0	139
41	Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12554-12561.	8.0	131
42	Development and Challenges of Functional Electrolytes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1800919.	14.9	129
43	High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery. ACS Applied Materials & Interfaces, 2016, 8, 27444-27448.	8.0	126
44	Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. Nano Letters, 2016, 16, 1960-1968.	9.1	124
45	Enhanced Sodium Ion Storage Behavior of P2-Type Na _{2/3} Fe _{1/2} Mn _{1/2} O ₂ Synthesized via a Chelating Agent Assisted Route. ACS Applied Materials & Interfaces, 2016, 8, 2857-2865.	8.0	121
46	Enhanced Electrochemical Kinetics with Highly Dispersed Conductive and Electrocatalytic Mediators for Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2100810.	21.0	121
47	Surface Modification of Li-Rich Cathode Materials for Lithium-Ion Batteries with a PEDOT:PSS Conducting Polymer. ACS Applied Materials & amp; Interfaces, 2016, 8, 23095-23104.	8.0	119
48	Boosting Fast Sodium Storage of a Largeâ€5calable Carbon Anode with an Ultralong Cycle Life. Advanced Energy Materials, 2018, 8, 1703159.	19.5	119
49	Sufficient Utilization of Zirconium Ions to Improve the Structure and Surface properties of Nickelâ€Rich Cathode Materials for Lithiumâ€lon Batteries. ChemSusChem, 2018, 11, 1639-1648.	6.8	117
50	Novel Solid‣tate Li/LiFePO ₄ Battery Configuration with a Ternary Nanocomposite Electrolyte for Practical Applications. Advanced Materials, 2011, 23, 5081-5085.	21.0	116
51	The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9760.	10.3	116
52	Open‧tructured V ₂ O ₅ · <i>n</i> H ₂ O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries. Advanced Energy Materials, 2017, 7, 1602720.	19.5	116
53	3D Electronic Channels Wrapped Large‣ized Na ₃ V ₂ (PO ₄) ₃ as Flexible Electrode for Sodiumâ€ion Batteries. Small, 2018, 14, e1702864.	10.0	116
54	Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11. 15537-15542.	8.0	113

#	Article	IF	CITATIONS
55	Use of Ce to Reinforce the Interface of Niâ€Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for Lithiumâ€Ion Batteries under High Operating Voltage. ChemSusChem, 2019, 12, 935-943.	6.8	113
56	Electrostatic Self-assembly of 0D–2D SnO2 Quantum Dots/Ti3C2Tx MXene Hybrids as Anode for Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 65.	27.0	112
57	A 3D flower-like VO ₂ /MXene hybrid architecture with superior anode performance for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 1315-1322.	10.3	112
58	Low-Temperature Molten-Salt-Assisted Recovery of Valuable Metals from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 16144-16150.	6.7	111
59	Systematic Effect for an Ultralong Cycle Lithium–Sulfur Battery. Nano Letters, 2015, 15, 7431-7439.	9.1	110
60	Toward Practical Highâ€Energy Batteries: A Modularâ€Assembled Oval‣ike Carbon Microstructure for Thick Sulfur Electrodes. Advanced Materials, 2017, 29, 1700598.	21.0	110
61	A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Management, 2019, 85, 437-444.	7.4	110
62	High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li ⁺ Diffusion Pathway. ACS Applied Materials & Interfaces, 2016, 8, 582-587.	8.0	108
63	3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. Scientific Reports, 2015, 5, 13340.	3.3	104
64	Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2016, 16, 5488-5494.	9.1	104
65	A Chemical Precipitation Method Preparing Hollow–Core–Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodiumâ€Ion Batteries. Small, 2018, 14, e1801246.	10.0	104
66	Nature-Inspired Na ₂ Ti ₃ O ₇ Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11669-11677.	8.0	103
67	Three-dimensional fusiform hierarchical micro/nano Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016 4 5942-5951	10.3	101
68	"Liquid-in-Solid―and "Solid-in-Liquid―Electrolytes with High Rate Capacity and Long Cycling Life for Lithium-Ion Batteries. Chemistry of Materials, 2016, 28, 848-856.	6.7	100
69	Na-Rich Na _{3+<i>x</i>} V _{2–<i>x</i>} Ni _{<i>x</i>} (PO ₄) ₃ /C for Sodium Ion Batteries: Controlling the Doping Site and Improving the Electrochemical Performances. ACS Applied Materials & amp: Interfaces. 2016. 8, 27779-27787.	8.0	99
70	Engineered Biochar from Biofuel Residue: Characterization and Its Silver Removal Potential. ACS Applied Materials & Interfaces, 2015, 7, 10634-10640.	8.0	98
71	Highâ€Performance Aqueous Zinc Batteries Based on Organic/Organic Cathodes Integrating Multiredox Centers. Advanced Materials, 2021, 33, e2106469.	21.0	98
72	An MXene/CNTs@P nanohybrid with stable Ti–O–P bonds for enhanced lithium ion storage. Journal of Materials Chemistry A, 2019, 7, 21766-21773.	10.3	97

#	Article	IF	CITATIONS
73	Structural and Electrochemical Study of Hierarchical LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 21939-21947.	8.0	95
74	Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 16078-16086.	8.0	95
75	Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. Nano Letters, 2021, 21, 3310-3317.	9.1	95
76	Preparation of MnO ₂ -Modified Graphite Sorbents from Spent Li-Ion Batteries for the Treatment of Water Contaminated by Lead, Cadmium, and Silver. ACS Applied Materials & Interfaces, 2017, 9, 25369-25376.	8.0	94
77	Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23635-23645.	8.0	93
78	Expanding Interlayer Spacing of Hard Carbon by Natural K ⁺ Doping to Boost Na-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 27030-27038.	8.0	93
79	Nature-Inspired, Graphene-Wrapped 3D MoS ₂ Ultrathin Microflower Architecture as a High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22323-22331.	8.0	93
80	An "Etherâ€Inâ€Water―Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2004017.	21.0	93
81	Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?. Journal of Materials Chemistry, 2012, 22, 1489-1497.	6.7	92
82	Microsphere‣ike SiO ₂ /MXene Hybrid Material Enabling High Performance Anode for Lithium Ion Batteries. Small, 2020, 16, e1905430.	10.0	90
83	Highly Safe Ionic Liquid Electrolytes for Sodium-Ion Battery: Wide Electrochemical Window and Good Thermal Stability. ACS Applied Materials & Interfaces, 2016, 8, 21381-21386.	8.0	88
84	Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment. ACS Applied Materials & Interfaces, 2016, 8, 21315-21325.	8.0	88
85	Platinumâ€Coated Hollow Graphene Nanocages as Cathode Used in Lithiumâ€Oxygen Batteries. Advanced Functional Materials, 2016, 26, 7626-7633.	14.9	88
86	A Li ⁺ conductive metal organic framework electrolyte boosts the high-temperature performance of dendrite-free lithium batteries. Journal of Materials Chemistry A, 2019, 7, 9530-9536.	10.3	88
87	Electrocatalytic Interlayer with Fast Lithium–Polysulfides Diffusion for Lithium–Sulfur Batteries to Enhance Electrochemical Kinetics under Lean Electrolyte Conditions. Advanced Functional Materials, 2020, 30, 2000742.	14.9	87
88	High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. Journal of Power Sources, 2013, 233, 115-120.	7.8	86
89	Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II). Science of the Total Environment, 2018, 640-641, 73-79.	8.0	86
90	New Binary Room-Temperature Molten Salt Electrolyte Based on Urea and LiTFSI. Journal of Physical Chemistry B, 2001, 105, 9966-9969.	2.6	85

#	Article	IF	CITATIONS
91	Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zincâ€lon Batteries. Advanced Materials, 2022, 34, e2200782.	21.0	85
92	Hierarchical Mesoporous Lithium-Rich Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ Cathode Material Synthesized via Ice Templating for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2016, 8, 18832-18840.	8.0	84
93	Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environmental Science and Pollution Research, 2018, 25, 25659-25667.	5.3	84
94	Lithium Induced Nanoâ€Sized Copper with Exposed Lithiophilic Surfaces to Achieve Dense Lithium Deposition for Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2006950.	14.9	84
95	Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 12559-12564.	10.3	83
96	Toward Rapidâ€Charging Sodiumâ€lon Batteries using Hybridâ€Phase Molybdenum Sulfide Selenideâ€Based Anodes. Advanced Materials, 2020, 32, e2003534.	21.0	82
97	Synergetic Anion Vacancies and Dense Heterointerfaces into Bimetal Chalcogenide Nanosheet Arrays for Boosting Electrocatalysis Sulfur Conversion. Advanced Materials, 2022, 34, e2109552.	21.0	81
98	A hybrid solid electrolyte Li _{0.33} La _{0.557} TiO ₃ /poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 706-713.	10.3	79
99	Engineering Catalytic CoSe–ZnSe Heterojunctions Anchored on Graphene Aerogels for Bidirectional Sulfur Conversion Reactions. Advanced Science, 2022, 9, e2103456.	11.2	79
100	Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries. Journal of Applied Electrochemistry, 2010, 40, 783-789.	2.9	77
101	Progress in electrolyte and interface of hard carbon and graphite anode for sodiumâ€ion battery. , 2022, 4, 458-479.		77
102	In Situ Analysis of Gas Generation in Lithium-Ion Batteries with Different Carbonate-Based Electrolytes. ACS Applied Materials & Interfaces, 2015, 7, 22751-22755.	8.0	76
103	Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes. ACS Applied Materials & Interfaces, 2017, 9, 7003-7008.	8.0	76
104	Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via In Situ Polymerization Coating. ACS Applied Materials & Interfaces, 2019, 11, 22339-22345.	8.0	75
105	Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries. Journal of Power Sources, 2007, 172, 395-403.	7.8	74
106	Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for Highâ€Performance Lithium/Sodium Storage. Small, 2021, 17, e2102893.	10.0	72
107	Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17033-17041.	10.3	70
108	Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 6959-6966.	10.3	68

#	Article	IF	CITATIONS
109	Stable Carbon–Selenium Bonds for Enhanced Performance in <i>Tremella</i> ‣ike 2D Chalcogenide Battery Anode. Advanced Energy Materials, 2018, 8, 1800927.	19.5	68
110	Multi-electron Reaction Materials for High-Energy-Density Secondary Batteries: Current Status and Prospective. Electrochemical Energy Reviews, 2021, 4, 35-66.	25.5	68
111	Recovery and Reuse of Anode Graphite from Spent Lithium-Ion Batteries via Citric Acid Leaching. ACS Applied Energy Materials, 2021, 4, 6261-6268.	5.1	68
112	An Effectively Activated Hierarchical Nano″Microspherical Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode for Longâ€Life and Highâ€Rate Lithiumâ€lon Batteries. ChemSusChem, 2016, 9, 728-735.	6.8	65
113	Inhibition of Crystallization of Poly(ethylene oxide) by Ionic Liquid: Insight into Plasticizing Mechanism and Application for Solid-State Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 43252-43260.	8.0	65
114	An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials. Journal of Materials Chemistry A, 2017, 5, 24292-24298.	10.3	64
115	Gluing Carbon Black and Sulfur at Nanoscale: A Polydopamineâ€Based "Nanoâ€Binder―for Doubleâ€Shelled Sulfur Cathodes. Advanced Energy Materials, 2017, 7, 1601591.	19.5	64
116	Chemical Synthesis of K ₂ S ₂ and K ₂ S ₃ for Probing Electrochemical Mechanisms in K–S Batteries. ACS Energy Letters, 2018, 3, 2858-2864.	17.4	64
117	Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes. ACS Applied Materials & Interfaces, 2015, 7, 15098-15107.	8.0	61
118	Quick Activation of Nanoporous Anatase TiO ₂ as High-Rate and Durable Anode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 39432-39440.	8.0	61
119	<i>In situ</i> formation of a LiF and Li–Al alloy anode protected layer on a Li metal anode with enhanced cycle life. Journal of Materials Chemistry A, 2020, 8, 1247-1253.	10.3	61
120	Metal Chalcogenides with Heterostructures for Highâ€Performance Rechargeable Batteries. Small Science, 2021, 1, 2100012.	9.9	61
121	A Soft Lithiophilic Graphene Aerogel for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2002013.	14.9	60
122	How Can the Electrode Influence the Formation of the Solid Electrolyte Interface?. ACS Energy Letters, 2021, 6, 3307-3320.	17.4	60
123	Improving the Structure Stability of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ by Surface Perovskite-like La ₂ Ni _{0.5} Li _{0.5} O ₄ Self-Assembling and Subsurface La ³⁺ Doping. ACS Applied Materials & amp: Interfaces. 2019. 11. 36751-36762.	8.0	59
124	Leaching Mechanisms of Recycling Valuable Metals from Spent Lithium-Ion Batteries by a Malonic Acid-Based Leaching System. ACS Applied Energy Materials, 2020, 3, 8532-8542.	5.1	59
125	Electrochemical Properties of the LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Material Modified by Lithium Tungstate under High Voltage. ACS Applied Materials & Interfaces, 2018, 10, 19704-19711.	8.0	57
126	3D Reticular Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 1516-1523.	8.0	56

#	Article	IF	CITATIONS
127	New Synthesis of a Foamlike Fe ₃ O ₄ /C Composite via a Self-Expanding Process and Its Electrochemical Performance as Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 19254-19264.	8.0	54
128	Hierarchical mesoporous/macroporous Co ₃ O ₄ ultrathin nanosheets as free-standing catalysts for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 17620-17626.	10.3	54
129	Building an Electronic Bridge via Ag Decoration To Enhance Kinetics of Iron Fluoride Cathode in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 19852-19860.	8.0	54
130	Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes. RSC Advances, 2017, 7, 5519-5527.	3.6	53
131	Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. Energy Material Advances, 2022, 2022, .	11.0	53
132	Polyethyleneâ€Glycolâ€Doped Polypyrrole Increases the Rate Performance of the Cathode in Lithium–Sulfur Batteries. ChemSusChem, 2013, 6, 1438-1444.	6.8	52
133	Strategies of Removing Residual Lithium Compounds on the Surface of <scp>Niâ€Rich</scp> Cathode Materials ^{â€} . Chinese Journal of Chemistry, 2021, 39, 189-198.	4.9	52
134	Consolidating the grain boundary of the garnet electrolyte LLZTO with Li ₃ BO ₃ for high-performance LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ /LiFePO ₄ hybrid solid batteries. Journal of Materials Chemistry A, 2019, 7, 20633-20639.	10.3	51
135	Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 11205-11213.	10.3	51
136	Enhanced Electrochemical Performance of Layered Lithium-Rich Cathode Materials by Constructing Spinel-Structure Skin and Ferric Oxide Islands. ACS Applied Materials & Interfaces, 2017, 9, 8669-8678.	8.0	50
137	Microorganism-moulded pomegranate-like Na ₃ V ₂ (PO ₄) ₃ /C nanocomposite for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9982-9990.	10.3	50
138	Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective. Journal of Physical Chemistry Letters, 2018, 9, 1398-1414.	4.6	50
139	Confined Growth of Nano-Na ₃ V ₂ (PO ₄) ₃ in Porous Carbon Framework for High-Rate Na-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 3107-3115.	8.0	50
140	Electrospun composite of ZnO/Cu nanocrystals-implanted carbon fibers as an anode material with high rate capability for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 4309.	10.3	49
141	Riveting Dislocation Motion: The Inspiring Role of Oxygen Vacancies in the Structural Stability of Ni-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2020, 12, 37208-37217.	8.0	49
142	Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodiumâ€Ion Battery. ChemSusChem, 2017, 10, 786-796.	6.8	48
143	Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li–S batteries. Chemical Communications, 2020, 56, 3007-3010.	4.1	48
144	2D Amorphous Moâ€Doped CoB for Bidirectional Sulfur Catalysis in Lithium Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	14.9	48

#	Article	IF	CITATIONS
145	Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 17910-17918.	8.0	47
146	Multilayered Electride Ca ₂ N Electrode via Compression Molding Fabrication for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6666-6669.	8.0	47
147	Recycling supercapacitor activated carbons for adsorption of silver (I) and chromium (VI) ions from aqueous solutions. Chemosphere, 2020, 238, 124638.	8.2	47
148	Lithiumâ€Rich Nanoscale Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ Cathode Material Prepared by Coâ€Precipitation Combined Freeze Drying (CP–FD) for Lithiumâ€Ion Batteries. Energy Technology, 2015, 3, 843-850.	3.8	46
149	Highâ€Rate, Durable Sodiumâ€lon Battery Cathode Enabled by Carbonâ€Coated Microâ€Sized Na ₃ V ₂ (PO ₄) ₃ Particles with Interconnected Vertical Nanowalls. Advanced Materials Interfaces, 2016, 3, 1500740.	3.7	46
150	Fe ₂ VO ₄ Nanoparticles Anchored on Ordered Mesoporous Carbon with Pseudocapacitive Behaviors for Efficient Sodium Storage. Advanced Functional Materials, 2021, 31, 2009756.	14.9	46
151	8.5Â µ mâ€Thick Flexibleâ€Rigid Hybrid Solid–Electrolyte/Lithium Integration for Airâ€Stable and Interfaceâ€Compatible Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	46
152	Carbon Nanofiber Elastically Confined Nanoflowers: A Highly Efficient Design for Molybdenum Disulfide-Based Flexible Anodes Toward Fast Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 5183-5192.	8.0	45
153	Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 13950-13958.	8.0	45
154	Research Progress of Lithium Plating on Graphite Anode in <scp>Lithiumâ€lon</scp> Batteries. Chinese Journal of Chemistry, 2021, 39, 165-173.	4.9	45
155	Capacitive Energy Storage on Fe/Li ₃ PO ₄ Grain Boundaries. Journal of Physical Chemistry C, 2011, 115, 3803-3808.	3.1	44
156	Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202, 322-331.	7.8	43
157	A Universal Method for Enhancing the Structural Stability of Ni-Rich Cathodes Via the Synergistic Effect of Dual-Element Cosubstitution. ACS Applied Materials & Interfaces, 2021, 13, 24925-24936.	8.0	43
158	Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries. Nano Research, 2017, 10, 426-436.	10.4	42
159	Highâ€Lithiophilicity Host with Micro/Nanostructured Active Sites based on Wenzel Wetting Model for Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2106676.	14.9	42
160	An Ionâ€Dipoleâ€Reinforced Polyether Electrolyte with Ionâ€Solvation Cages Enabling High–Voltageâ€Tolerant and Ionâ€Conductive Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, 2107764.	14.9	41
161	Scalable Preparation of Ternary Hierarchical Silicon Oxide–Nickel–Graphite Composites for Lithiumâ€lon Batteries. ChemSusChem, 2015, 8, 4073-4080.	6.8	40
162	Mg-Enriched Engineered Carbon from Lithium-Ion Battery Anode for Phosphate Removal. ACS Applied Materials & Interfaces, 2016, 8, 2905-2909.	8.0	40

#	Article	IF	CITATIONS
163	High-Capacity Interstitial Mn-Incorporated Mn _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ /Graphene Nanocomposite for Sodium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2019, 11, 37812-37821.	8.0	40
164	Strongly Coupled Carbon Nanosheets/Molybdenum Carbide Nanocluster Hollow Nanospheres for Highâ€Performance Aprotic Li–O ₂ Battery. Small, 2018, 14, e1704366.	10.0	39
165	A theoretical study on Na ⁺ solvation in carbonate ester and ether solvents for sodium-ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 2164-2175.	2.8	39
166	Synergistic Effects of Stabilizing the Surface Structure and Lowering the Interface Resistance in Improving the Low-Temperature Performances of Layered Lithium-Rich Materials. ACS Applied Materials & Interfaces, 2017, 9, 8641-8648.	8.0	38
167	Self-Nitrogen-Doped Carbon from Plant Waste as an Oxygen Electrode Material with Exceptional Capacity and Cycling Stability for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 32212-32219.	8.0	38
168	Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Metals, 2020, 39, 1457-1463.	7.1	38
169	A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalate)borate for lithium batteries. Journal of Materials Chemistry A, 2013, 1, 3659.	10.3	37
170	Electrolyte-Resistant Dual Materials for the Synergistic Safety Enhancement of Lithium-Ion Batteries. Nano Letters, 2021, 21, 2074-2080.	9.1	37
171	Stable Nanostructured Cathode with Polycrystalline Li-Deficient Li _{0.28} Co _{0.29} Ni _{0.30} Mn _{0.20} O ₂ for Lithium-Ion Batteries. Nano Letters, 2014, 14, 1281-1287.	9.1	36
172	Surface modification of a cobalt-free layered Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ oxide with the FePO ₄ /Li ₃ PO ₄ composite as the cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 9528-9537.	10.3	36
173	Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 10882-10889.	8.0	36
174	Hand-in-Hand Reinforced rGO Film Used as an Auxiliary Functional Layer for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12544-12553.	8.0	36
175	Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5142-5147.	10.3	35
176	Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range. Journal of Materials Chemistry A, 2017, 5, 24677-24685.	10.3	35
177	Preparation and electrochemical properties of re-synthesized LiCoO2 from spent lithium-ion batteries. Science Bulletin, 2012, 57, 4188-4194.	1.7	34
178	MOF-derived lithiophilic CuO nanorod arrays for stable lithium metal anodes. Nanoscale, 2020, 12, 9416-9422.	5.6	34
179	Boosting Sodium Storage Performance of Hard Carbon Anodes by Pore Architecture Engineering. ACS Applied Materials & Interfaces, 2021, 13, 47671-47683.	8.0	34
180	Defects and sulfur-doping design of porous carbon spheres for high-capacity potassium-ion storage. Journal of Materials Chemistry A, 2022, 10, 682-689.	10.3	34

#	Article	IF	CITATIONS
181	Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film anodes. Journal of Materials Chemistry A, 2017, 5, 5532-5540.	10.3	33
182	Micrometerâ€6ized RuO ₂ Catalysts Contributing to Formation of Amorphous Naâ€Deficient Sodium Peroxide in Na–O ₂ Batteries. Advanced Functional Materials, 2017, 27, 1700632.	14.9	33
183	Sustainable Regeneration of High-Performance Li _{1–<i>x</i>} Na <i>_x</i> CoO ₂ from Cathode Materials in Spent Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 2607-2615.	5.1	33
184	An Antipulverization and High ontinuity Lithium Metal Anode for Highâ€Energy Lithium Batteries. Advanced Materials, 2021, 33, e2105029.	21.0	32
185	Improved Stability of Layered and Porous Nickelâ€Rich Cathode Materials by Relieving the Accumulation of Inner Stress. ChemSusChem, 2020, 13, 426-433.	6.8	31
186	Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. National Science Review, 2020, 7, 1367-1386.	9.5	31
187	Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. Nano Research, 2018, 11, 1563-1574.	10.4	30
188	Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries. Waste Management, 2020, 114, 166-173.	7.4	30
189	New secondary batteries and their key materials based on the concept of multi-electron reaction. Science Bulletin, 2014, 59, 3369-3376.	1.7	29
190	A three-dimensional hierarchical structure of cyclized-PAN/Si/Ni for mechanically stable silicon anodes. Journal of Materials Chemistry A, 2017, 5, 24667-24676.	10.3	29
191	Flexible TiO ₂ /SiO ₂ /C Film Anodes for Lithiumâ€lon Batteries. ChemSusChem, 2018, 11, 2040-2044.	6.8	29
192	Cycling Performance and Kinetic Mechanism Analysis of a Li Metal Anode in Series-Concentrated Ether Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 8366-8375.	8.0	29
193	A leaf-like Al ₂ O ₃ -based quasi-solid electrolyte with a fast Li ⁺ conductive interface for stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 7280-7287.	10.3	29
194	Effect of lithium carbonate precipitates on the electrochemical cycling stability of LiCoO2 cathodes at a high voltage. RSC Advances, 2014, 4, 10196.	3.6	28
195	<i>In situ</i> formation of a Li–Sn alloy protected layer for inducing lateral growth of dendrites. Journal of Materials Chemistry A, 2020, 8, 23574-23579.	10.3	28
196	Co ₉ S ₈ Nanorods as an Electrocatalyst To Enhance Polysulfide Conversion and Alleviate Passivation in Li–S Batteries under Lean Electrolyte Conditions. ACS Applied Materials & Interfaces, 2020, 12, 21701-21708.	8.0	28
197	Insight on lithium polysulfide intermediates in a Li/S battery by density functional theory. RSC Advances, 2017, 7, 33373-33377.	3.6	27
198	Compound-Hierarchical-Sphere LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ : Synthesis, Structure, and Electrochemical Characterization. ACS Applied Materials & Interfaces, 2018, 10, 32120-32127.	8.0	27

#	Article	IF	CITATIONS
199	Improved Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials Induced by a Facile Polymer Coating for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6205-6213.	5.1	27
200	Hierarchical Triple‧helled MnCo ₂ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials for Potassiumâ€ion Batteries. Small, 2021, 17, e2007597.	10.0	26
201	Roles of Fastâ€lon Conductor LiTaO ₃ Modifying Niâ€rich Cathode Material for Liâ€lon Batteries. ChemSusChem, 2021, 14, 1955-1961.	6.8	26
202	Anionâ€Doped Cobalt Selenide with Porous Architecture for Highâ€Rate and Flexible Lithium–Sulfur Batteries. Small Methods, 2021, 5, e2100649.	8.6	26
203	Toward Mechanically Stable Silicon-Based Anodes Using Si/SiO _{<i>x</i>} @C Hierarchical Structures with Well-Controlled Internal Buffer Voids. ACS Applied Materials & Interfaces, 2018, 10, 41422-41430.	8.0	25
204	New Application of Waste Citrus Maxima Peel-Derived Carbon as an Oxygen Electrode Material for Lithium Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 32058-32066.	8.0	25
205	Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. ACS Applied Materials & Interfaces, 2021, 13, 38202-38212.	8.0	25
206	Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte. Journal of Solid State Electrochemistry, 2013, 17, 811-816.	2.5	24
207	A polypyrrole-supported carbon paper acting as a polysulfide trap for lithium–sulfur batteries. RSC Advances, 2015, 5, 94479-94485.	3.6	24
208	Ultralong Cycle Life Achieved by a Natural Plant: <i>Miscanthus × giganteus</i> for Lithium Oxygen Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4382-4390.	8.0	24
209	Advances and Prospects of Surface Modification on <scp>Nickelâ€Rich</scp> Materials for <scp>Lithiumâ€lon</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1817-1831.	4.9	24
210	Tuning Cobaltâ€Free Nickelâ€Rich Layered LiNi _{0.9} Mn _{0.1} O ₂ Cathode Material for Lithiumâ€ion Batteries. ChemElectroChem, 2020, 7, 2637-2642.	3.4	24
211	Resolving the Structural Defects of Spent Li _{1â^'} <i>_x</i> CoO ₂ Particles to Directly Reconstruct High Voltage Performance Cathode for Lithiumâ€ion Batteries. Small Methods, 2021, 5, e2100672.	8.6	24
212	Boosting the ultrahigh initial coulombic efficiency of porous carbon anodes for sodium-ion batteries <i>via in situ</i> fabrication of a passivation interface. Journal of Materials Chemistry A, 2021, 9, 10780-10788.	10.3	24
213	Metalâ€Ion Batteries: Openâ€5tructured V ₂ O ₅ · <i>n</i> H ₂ O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries (Adv. Energy Mater. 14/2017). Advanced Energy Materials, 2017, 7, .	19.5	23
214	An Ionic Liquid/Poly(vinylidene fluorideâ€coâ€hexafluoropropylene) Gelâ€Polymer Electrolyte with a Compatible Interface for Sodiumâ€Based Batteries. ChemElectroChem, 2019, 6, 2423-2429.	3.4	23
215	Rational Tuning of a Li ₄ SiO ₄ -Based Hybrid Interface with Unique Stepwise Prelithiation for Dendrite-Proof and High-Rate Lithium Anodes. ACS Applied Materials & Interfaces, 2020, 12, 39362-39371.	8.0	23
216	High Pseudocapacitance Boosts Ultrafast, High-Capacity Sodium Storage of 3D Graphene Foam-Encapsulated TiO ₂ Architecture. ACS Applied Materials & Interfaces, 2020, 12, 23939-23950.	8.0	23

#	Article	IF	CITATIONS
217	Synthesis of Ni-Rich Cathode Material from Maleic Acid-Leachate of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 7839-7850.	6.7	23
218	A Mixed Modified Layer Formed In Situ to Protect and Guide Lithium Plating/Stripping Behavior. ACS Applied Materials & Interfaces, 2020, 12, 31411-31418.	8.0	23
219	Solvent Effects on Kinetics and Electrochemical Performances of Rechargeable Aluminum Batteries. Energy Material Advances, 2022, 2022, .	11.0	23
220	Ring-chain synergy in ionic liquid electrolytes for lithium batteries. Chemical Science, 2015, 6, 7274-7283.	7.4	21
221	Suppression of lithium dendrite growth by introducing a low reduction potential complex cation in the electrolyte. RSC Advances, 2016, 6, 51738-51746.	3.6	21
222	Turning Waste Chemicals into Wealth—A New Approach To Synthesize Efficient Cathode Material for an Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2017, 9, 31907-31912.	8.0	21
223	Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH2–NaBH4 Hydrogen Storage Composite. ACS Applied Materials & Interfaces, 2017, 9, 31977-31984.	8.0	21
224	A three-dimensional network structure Si/C anode for Li-ion batteries. Journal of Materials Science, 2017, 52, 10950-10958.	3.7	21
225	Stable Conversion Mn ₃ O ₄ Li-Ion Battery Anode Material with Integrated Hierarchical and Core–Shell Structure. ACS Applied Energy Materials, 2019, 2, 5206-5213.	5.1	21
226	<scp>Natureâ€inspired</scp> porous <scp>multichannel</scp> carbon monolith: Molecular cooperative enables sustainable production and <scp>highâ€performance</scp> capacitive energy storage. InformaÄnÃ-Materiály, 2021, 3, 1154-1170.	17.3	21
227	Modification of LiCo1/3Ni1/3Mn1/3O2 cathode material by CeO2-coating. Science in China Series D: Earth Sciences, 2009, 52, 2737-2741.	0.9	20
228	High performance FeFx/C composites as cathode materials for lithium-ion batteries. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	20
229	Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries. Journal of Power Sources, 2014, 245, 730-738.	7.8	20
230	Synthesis of Mg-Decorated Carbon Nanocomposites from MesoCarbon MicroBeads (MCMB) Graphite: Application for Wastewater Treatment. ACS Omega, 2016, 1, 417-423.	3.5	20
231	CF@rGO/PPy-S Hybrid Foam with Paper Window-like Microstructure as Freestanding and Flexible Cathode for the Lithium–Sulfur Battery. ACS Applied Energy Materials, 2019, 2, 4151-4158.	5.1	20
232	Pâ€Doped Ni/NiO Heterostructured Yolkâ€Shell Nanospheres Encapsulated in Graphite for Enhanced Lithium Storage. Small, 2022, 18, e2105897.	10.0	20
233	Tuning Microstructures of Graphene to Improve Power Capability of Rechargeable Hybrid Aqueous Batteries. ACS Applied Materials & Interfaces, 2018, 10, 37110-37118.	8.0	19
234	Sodium Ion Batteries: Stable Carbon–Selenium Bonds for Enhanced Performance in <i>Tremella</i> ‣ike 2D Chalcogenide Battery Anode (Adv. Energy Mater. 23/2018). Advanced Energy Materials, 2018, 8, 1870106.	19.5	19

#	Article	IF	CITATIONS
235	Effect of the Activation Process on the Microstructure and Electrochemical Properties of N-Doped Carbon Cathodes in Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34997-35004.	8.0	19
236	Enhanced Electrochemical Performance of Ni-Rich Cathode Materials with an In Situ-Formed LiBO ₂ /B ₂ O ₃ Hybrid Coating Layer. ACS Applied Energy Materials, 2022, 5, 2231-2241.	5.1	19
237	Multidimensional <scp>Co₃O₄</scp> / <scp>NiO</scp> heterojunctions with richâ€boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InformaÄnÃ-Materiály, 2022, 4, .	17.3	19
238	Thermochemical Cyclization Constructs Bridged Dual-Coating of Ni-Rich Layered Oxide Cathodes for High-Energy Li-Ion Batteries. Nano Letters, 2022, 22, 5221-5229.	9.1	19
239	A facile approach of introducing DMS into LiODFB–PYR ₁₄ TFSI electrolyte for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6366-6372.	10.3	18
240	The positive role of (NH ₄) ₃ AlF ₆ coating on Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ oxide as the cathode material for lithium-ion batteries. RSC Advances, 2017, 7, 1191-1199.	3.6	18
241	Effects of a High-Concentration LiPF ₆ -Based Carbonate Ester Electrolyte for the Electrochemical Performance of a High-Voltage Layered LiN _{i0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode. ACS Applied Energy Materials. 2019. 2. 8878-8884.	5.1	18
242	Elektrolyte für wiederaufladbare Lithium‣uftâ€Batterien. Angewandte Chemie, 2020, 132, 2994-3019.	2.0	18
243	Clean the Ni-Rich Cathode Material Surface With Boric Acid to Improve Its Storage Performance. Frontiers in Chemistry, 2020, 8, 573.	3.6	18
244	Sustainable Recycling of Cathode Scrap towards Highâ€Performance Anode Materials for Liâ€lon Batteries. Advanced Energy Materials, 2022, 12, 2103288.	19.5	18
245	Synthesis and characterization of homo- and copolymers of 3-(2-cyano ethoxy)methyl- and 3-[methoxy(triethylenoxy)]methyl-3′-methyl-oxetane. Polymer International, 2005, 54, 1440-1448.	3.1	17
246	Maleic, glycolic and acetoacetic acids-leaching for recovery of valuable metals from spent lithium-ion batteries: leaching parameters, thermodynamics and kinetics. Royal Society Open Science, 2019, 6, 191061.	2.4	17
247	High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs. ACS Applied Materials & Interfaces, 2021, 13, 6286-6297.	8.0	17
248	Regulating the Solvation Structure of Nonflammable Electrolyte for Dendrite-Free Li-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 681-687.	8.0	17
249	Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn–organic batteries. Materials Horizons, 2021, 8, 3124-3132.	12.2	17
250	Closed-loop selective recycling process of spent LiNi Co Mn O2 batteries by thermal-driven conversion. Journal of Hazardous Materials, 2022, 424, 127757.	12.4	17
251	Ultrastable Bioderived Organic Anode Induced by Synergistic Coupling of Binder/Carbon-Network for Advanced Potassium-Ion Storage. Nano Letters, 2022, 22, 4115-4123.	9.1	17
252	The Structureâ~'Activity Relationship and Physicochemical Properties of Acetamide-Based BrÃ,nsted Acid Ionic Liquids. Journal of Physical Chemistry C, 2010, 114, 20007-20015.	3.1	16

#	Article	IF	CITATIONS
253	Progression of the silicate cathode materials used in lithium ion batteries. Science Bulletin, 2013, 58, 575-584.	1.7	15
254	Densely Packed 3D Corrugated Papery Electrodes as Polysulfide Reservoirs for Lithium–Sulfur Battery with Ultrahigh Volumetric Capacity. ACS Sustainable Chemistry and Engineering, 2020, 8, 5648-5661.	6.7	15
255	Bimetallic Antimony–Vanadium Oxide Nanoparticles Embedded in Graphene for Stable Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 21127-21137.	8.0	14
256	Vertical Channels Design for Polymer Electrolyte to Enhance Mechanical Strength and Ion Conductivity. ACS Applied Materials & Interfaces, 2021, 13, 42957-42965.	8.0	14
257	From Flower‣ike to Spherical Deposition: A GCNT Aerogel Scaffold for Fastâ€Charging Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2102454.	19.5	14
258	Study on the Interfacial Mechanism of Bisalt Polyether Electrolyte for Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, 2109184.	14.9	14
259	Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 942-952.	4.9	14
260	A floral variant of mesoporous carbon as an anode material for high performance sodium and lithium ion batteries. RSC Advances, 2016, 6, 78235-78240.	3.6	13
261	Freestanding Nâ€Đoped Carbon Coated CuO Array Anode for Lithiumâ€ŀon and Sodiumâ€ŀon Batteries. Energy Technology, 2019, 7, 1900252.	3.8	13
262	Local Strong Solvation Electrolyte Tradeâ€Off between Capacity and Cycle Life of Liâ€O ₂ Batteries. Advanced Functional Materials, 2021, 31, 2101831.	14.9	13
263	Preparation and performance of novel LLTO thin film electrolytes for thin film lithium batteries. Science Bulletin, 2012, 57, 4199-4204.	1.7	12
264	Vanadium Organometallics as an Interfacial Stabilizer for Ca <i>_x</i> V ₂ O ₅ /Vanadyl Acetylacetonate Hybrid Nanocomposite with Enhanced Energy Density and Power Rate for Full Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23291-23302.	8.0	12
265	In situ generated spinel-phase skin on layered Li-rich short nanorods as cathode materials for lithium-ion batteries. Journal of Materials Science, 2019, 54, 9098-9110.	3.7	12
266	Ultrathin 3 V Spinel Clothed Layered Lithiumâ€Rich Oxides as Heterostructured Cathode for Highâ€Energy and Highâ€Power Liâ€ion Batteries â€. Chinese Journal of Chemistry, 2021, 39, 345-352.	4.9	12
267	Powering lithium–sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets. Nanoscale, 2021, 13, 16690-16695.	5.6	12
268	<i>In situ</i> -formed flexible three-dimensional honeycomb-like film for a LiF/Li ₃ N-enriched hybrid organic–inorganic interphase on the Li metal anode. Materials Chemistry Frontiers, 2021, 5, 5082-5092.	5.9	12
269	Preparation and characterization of Pt-WO3/C catalysts for direct ethanol fuel cells. Rare Metals, 2010, 29, 255-260.	7.1	11
270	Reorganizing electronic structure of Li3V2(PO4)3 using polyanion (BO3)3â^' : towards better electrochemical performances. Rare Metals, 2017, 36, 397-402.	7.1	11

#	Article	IF	CITATIONS
271	Interfacial Degradation and Optimization of Liâ€rich Cathode Materials ^{â€} . Chinese Journal of Chemistry, 2021, 39, 402-420.	4.9	11
272	A lithium-ion battery recycling technology based on a controllable product morphology and excellent performance. Journal of Materials Chemistry A, 2021, 9, 18623-18631.	10.3	11
273	Toward Highly Stable Anode for Secondary Batteries: Employing TiO ₂ Shell as Elastic Buffering Marix for FeO <i>_x</i> Nanoparticles. Small, 2022, 18, e2105713.	10.0	11
274	Enhancing the Long Cycle Performance of Li–O ₂ Batteries at High Temperatures Using Metal–Organic Framework-Based Electrolytes. ACS Applied Energy Materials, 2022, 5, 7185-7191.	5.1	10
275	Thermal behavior of nickel–metal hydride battery during charging at a wide range of ambient temperatures. Journal of Thermal Analysis and Calorimetry, 2011, 105, 383-388.	3.6	9
276	Application prospects of high-voltage cathode materials in all-solid-state lithium-ion batteries. Science Bulletin, 2014, 59, 1950-1963.	1.7	9
277	A novel synthesis of gadolinium-doped Li3V2(PO4)3/C with excellent rate capacity and cyclability. RSC Advances, 2016, 6, 28624-28632.	3.6	9
278	Biochars preparation from waste sludge and composts under different carbonization conditions and their Pb(II) adsorption behaviors. Water Science and Technology, 2019, 80, 1063-1075.	2.5	9
279	Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries. Nano Research, 2022, 15, 3143-3149.	10.4	9
280	A novel gel polymer electrolyte doped with MXene enables dendrite-free cycling for high-performance sodium metal batteries. Journal of Materials Chemistry A, 2022, 10, 11553-11561.	10.3	9
281	Methods for promoting electrochemical properties of LiNil/3Col/3Mnl/3O2 for lithium-ion batteries. Science Bulletin, 2013, 58, 1869-1875.	1.7	8
282	Novel Slurry Electrolyte Containing Lithium Metasilicate for High Electrochemical Performance of a 5 V Cathode. ACS Applied Materials & Interfaces, 2015, 7, 22898-22906.	8.0	8
283	Dendriteâ€Free Lithium Anodes with a Metal Organic Frameworkâ€Đerived Cakeâ€ŀike TiO ₂ Coating on the Separator. ChemElectroChem, 2020, 7, 2159-2164.	3.4	8
284	Effect of Electrolyte Additives on the Cycling Performance of Li Metal and the Kinetic Mechanism Analysis. ACS Applied Materials & Interfaces, 2021, 13, 18283-18293.	8.0	8
285	A Designed Lithiophilic Carbon Channel on Separator to Regulate Lithium Deposition Behavior. Small, 2022, 18, e2104390.	10.0	8
286	β-Cyclodextrin coated lithium vanadium phosphate as novel cathode material for lithium ion batteries. RSC Advances, 2016, 6, 103364-103371.	3.6	7
287	Sublimated Seâ€Induced Formation of Dualâ€Conductive Surface Layers for Highâ€Performance Niâ€Rich Layered Cathodes. ChemElectroChem, 2021, 8, 4207-4217.	3.4	7
288	High capacity cobalt boride prepared via vacuum freeze-drying method and used as anode material for alkaline secondary battery. Journal of Renewable and Sustainable Energy, 2013, 5, 021401.	2.0	6

#	Article	IF	CITATIONS
289	Influences of Ni-Co-B catalyst on the thermal decomposition of light-weight NaNH2-NaBH4 hydrogen storage material. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	6
290	Enhanced hydrogen generation by solid-state thermal decomposition of NaNH2–NaBH4 composite promoted with Mg–Co–B catalyst. Journal of Materials Research, 2017, 32, 1203-1209.	2.6	6
291	Lithium–air and lithium–copper batteries based on a polymer stabilized interface between two immiscible electrolytic solutions (ITIES). New Journal of Chemistry, 2012, 36, 2140.	2.8	5
292	Hollow NaTi 1.9 Sn 0.1 (PO 4) 3 @C Nanoparticles for Anodes of Sodiumâ€lon Batteries with Superior Rate and Cycling Properties. Energy Technology, 2019, 7, 1900079.	3.8	5
293	Lightweight Shield to Stabilize Li Metal Anodes at High Current Rates. ACS Applied Energy Materials, 2021, 4, 11878-11885.	5.1	5
294	Thermal behavior simulation of Ni/MH battery. Science Bulletin, 2009, 54, 1500-1506.	9.0	4
295	Nanostructure and formation mechanism of Pt-WO3/C nanocatalyst by ethylene glycol method. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 377-383.	1.0	4
296	Lithiumâ€lon Batteries: Inducing Favorable Cation Antisite by Doping Halogen in Niâ€Rich Layered Cathode with Ultrahigh Stability (Adv. Sci. 4/2019). Advanced Science, 2019, 6, 1970021.	11.2	4
297	Burning magnesium in carbon dioxide for highly effective phosphate removal. , 2021, 3, 330-337.		4
298	8.5Â µ mâ€Thick Flexibleâ€Rigid Hybrid Solid–Electrolyte/Lithium Integration for Airâ€Stable and Interfaceâ€Compatible Allâ€Solidâ€State Lithium Metal Batteries (Adv. Energy Mater. 24/2022). Advanced Energy Materials, 2022, 12, .	19.5	4
299	Synthesis and characteristics of a siliconâ€containing polymer, manufacture of an electrolyte membrane from the polymer and poly(vinylidene fluorideâ€ <i>co</i> â€hexafluoropropene), and property testing of the membrane. Journal of Applied Polymer Science, 2009, 114, 1086-1093.	2.6	3
300	Modified disordered carbon prepared from 3,4,9,10-perylenetetracarboxylic dianhydride as an anode material for Li-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 203-209.	4.9	3
301	Sodiumâ€lon Batteries: Toward Rapidâ€Charging Sodiumâ€lon Batteries using Hybridâ€Phase Molybdenum Sulfide Selenideâ€Based Anodes (Adv. Mater. 40/2020). Advanced Materials, 2020, 32, 2070302.	21.0	3
302	An Ionâ€Dipoleâ€Reinforced Polyether Electrolyte with Ionâ€Solvation Cages Enabling High–Voltageâ€Tolerant and Ionâ€Conductive Solidâ€State Lithium Metal Batteries (Adv. Funct. Mater.) Tj ET	Ūq 040 90 rį	gBT3/Overlock
303	Synthesis of copolymers of 3-acryloyloxymethyl-3′-methyloxetane and 3-(2-(2-(2-methoxyethylenoxy)ethylenoxy)ethylenoxy)-3′-methyloxetane and their ionic conductivity properties. Frontiers of Chemical Engineering in China, 2007, 1, 343-348.	0.6	2
304	Electrochemical Behavior of Fe(VI)-Fe(III) System in Concentrated NaOH Solution. ACS Symposium Series, 2008, , 81-93.	0.5	2
305	Improvement of the electrochemical performance of LiNi0.33Mn0.33Co0.33O2 cathode material by chromium doping. Science China Technological Sciences, 2010, 53, 3214-3220.	4.0	2
306	Optimization of electrolyte conductivity for Li-ion batteries based on mass triangle model. Chemical Research in Chinese Universities, 2013, 29, 116-120.	2.6	2

#	Article	IF	CITATIONS
307	Stabilization of Sulfur Cathode with Poly-peri-naphthalene for High Electrochemical Performance. Journal of Materials Engineering and Performance, 2015, 24, 946-951.	2.5	2
308	Fast Capacitive Energy Storage and Long Cycle Life in a Deintercalation–Intercalation Cathode Material. Small, 2020, 16, 1906025.	10.0	2
309	Advanced Li–S Batteries Enabled by a Biomimetic Polysulfide-Engulfing Net. ACS Applied Materials & Interfaces, 2021, 13, 23811-23821.	8.0	2
310	Hydrogen Generation from Ethanol Steam Reforming over Rare Earth Promoted Nickel-based Catalysts. , 2007, , .		1
311	Preparation and evaluation of two kinds of solid polymer electrolytes made from crosslinked poly(ether urethane) elastomers consisting of a combâ€like and a hyperbranched polyether. Journal of Applied Polymer Science, 2008, 109, 1955-1961.	2.6	1
312	Does heavy metal hurt in the secondary battery production sites? The case study of occupational risk from Yangtze River Delta, China. Human and Ecological Risk Assessment (HERA), 2017, 23, 1285-1299.	3.4	1
313	Energy Storage: Polyanionâ€Type Electrode Materials for Sodiumâ€Ion Batteries (Adv. Sci. 3/2017). Advanced Science, 2017, 4, .	11.2	1
314	Hard Carbon Anode Materials for Sodium-Ion Batteries. , 2021, , 87-109.		1
315	Recycling of Rechargeable Batteries: Insights from a Bibliometricsâ€Based Analysis of Emerging Publishing and Research Trends. Advanced Energy and Sustainability Research, 2022, 3, 2100153.	5.8	1
316	Modification of Spinel LiMn ₂ O ₄ Using an Electrochemical Method. , 2000, , .		0
317	Improve Cycling Performance of Spinel LiMn ₂ O ₄ by Cation Doping. , 2000, , .		0
318	Research on catalysis of sodium-metallochlorophylls in Ni/MH battery. Science Bulletin, 2009, 54, 3005-3013.	1.7	0
319	Electrochemical performance and kinetics of LiFePO4/C cathode in a low-temperature electrolyte. World Electric Vehicle Journal, 2010, 4, 396-399.	3.0	0
320	Mg-substituted olivine LiFePO <inf>4</inf> for secondary lithium ion batteries. , 2011, , .		0
321	Preparation of Microporous Membranes for Lithium ion battery. , 2000, , .		0