List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/885850/publications.pdf Version: 2024-02-01

PISTE ÅKDEKOVSKI

#	Article	IF	CITATIONS
1	Vertex and edge metric dimensions of unicyclic graphs. Discrete Applied Mathematics, 2022, 314, 81-92.	0.9	6
2	Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two. Applied Mathematics and Computation, 2022, 427, 127147.	2.2	1
3	Vertex and edge metric dimensions of cacti. Discrete Applied Mathematics, 2022, 320, 126-139.	0.9	6
4	Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs. Mathematics, 2022, 10, 2411.	2.2	2
5	Distance based indices in nanotubical graphs: part 3. Journal of Mathematical Chemistry, 2021, 59, 250-263.	1.5	0
6	Arithmetic–geometric index and its relations with geometric–arithmetic index. Applied Mathematics and Computation, 2021, 391, 125706.	2.2	15
7	Odd decompositions and coverings of graphs. European Journal of Combinatorics, 2021, 91, 103225.	0.8	5
8	Some Remarks on Odd Edge Colorings of Digraphs. Mathematics, 2021, 9, 231.	2.2	0
9	Data structure set-trie for storing and querying sets: Theoretical and empirical analysis. PLoS ONE, 2021, 16, e0245122.	2.5	7
10	Bounds on metric dimensions of graphs with edge disjoint cycles. Applied Mathematics and Computation, 2021, 396, 125908.	2.2	10
11	Domination versus independent domination in regular graphs. Journal of Graph Theory, 2021, 98, 525-530.	0.9	1
12	Graphs with the edge metric dimension smaller than the metric dimension. Applied Mathematics and Computation, 2021, 401, 126076.	2.2	19
13	Bounding the k-rainbow total domination number. Discrete Mathematics, 2021, 344, 112425.	0.7	1
14	Mixed metric dimension of graphs with edge disjoint cycles. Discrete Applied Mathematics, 2021, 300, 1-8.	0.9	14
15	Extremal mixed metric dimension with respect to the cyclomatic number. Applied Mathematics and Computation, 2021, 404, 126238.	2.2	9
16	Coverability of Graphs by Parity Regular Subgraphs. Mathematics, 2021, 9, 182.	2.2	0
17	Wiener Complexity versus the Eccentric Complexity. Mathematics, 2021, 9, 79.	2.2	0
18	Remarks on the Local Irregularity Conjecture. Mathematics, 2021, 9, 3209.	2.2	5

#	Article	IF	CITATIONS
19	The structure of graphs with given number of blocks and the maximum Wiener index. Journal of Combinatorial Optimization, 2020, 39, 170-184.	1.3	2
20	On Three Constructions of Nanotori. Mathematics, 2020, 8, 2036.	2.2	3
21	Group Degree Centrality and Centralization in Networks. Mathematics, 2020, 8, 1810.	2.2	9
22	Trees with Minimum Weighted Szeged Index Are of a Large Diameter. Symmetry, 2020, 12, 793.	2.2	1
23	Remarks on Distance Based Topological Indices for â,, "-Apex Trees. Symmetry, 2020, 12, 802.	2.2	2
24	Graphs with the second and third maximum Wiener indices over the 2-vertex connected graphs. Discrete Applied Mathematics, 2020, 284, 195-200.	0.9	4
25	Maximal Wiener index for graphs with prescribed number of blocks. Applied Mathematics and Computation, 2020, 380, 125274.	2.2	3
26	Eccentricity of networks with structural constraints. Discussiones Mathematicae - Graph Theory, 2020, 40, 1141.	0.3	9
27	Redundant binary representations with rigorous trade-off between connectivity and locality. , 2020, , .		0
28	Facial unique-maximum colorings of plane graphs with restriction on big vertices. Discrete Mathematics, 2019, 342, 2612-2617.	0.7	2
29	An inequality between variable wiener index andÂvariable szeged index. Applied Mathematics and Computation, 2019, 362, 124557.	2.2	0
30	Remarks on Multiplicative Atom-Bond Connectivity Index. IEEE Access, 2019, 7, 76806-76811.	4.2	15
31	Trees with the maximal value of Graovac–Pisanski index. Applied Mathematics and Computation, 2019, 358, 287-292.	2.2	8
32	Graphs with a given diameter that maximise the Wiener index. Applied Mathematics and Computation, 2019, 356, 438-448.	2.2	6
33	On the minimum distance in a k-vertex set in a graph. Applied Mathematics and Computation, 2019, 356, 99-104.	2.2	2
34	Coverability of graph by three odd subgraphs. Journal of Graph Theory, 2019, 92, 304-321.	0.9	3
35	Maximum external Wiener index of graphs. Discrete Applied Mathematics, 2019, 257, 331-337.	0.9	4
36	Total positivity of Toeplitz matrices of recursive hypersequences. Ars Mathematica Contemporanea, 2019, 17, 125-139.	0.6	2

#	Article	IF	CITATIONS
37	Unicyclic graphs with the maximal value of Graovac-Pisanski index. Ars Mathematica Contemporanea, 2019, 17, 455-466.	0.6	3
38	On facial unique-maximum (edge-)coloring. Discrete Applied Mathematics, 2018, 237, 26-32.	0.9	3
39	Lah numbers and Lindström's lemma. Comptes Rendus Mathematique, 2018, 356, 5-7.	0.3	2
40	A counterexample to a conjecture on facial unique-maximal colorings. Discrete Applied Mathematics, 2018, 237, 123-125.	0.9	4
41	Graphs whose Wiener index does not change when a specific vertex is removed. Discrete Applied Mathematics, 2018, 238, 126-132.	0.9	13
42	Modelling simultaneous broadcasting by level-disjoint partitions. Applied Mathematics and Computation, 2018, 325, 15-23.	2.2	2
43	Broadcasting multiple messages in the 1-in port model in optimal time. Journal of Combinatorial Optimization, 2018, 36, 1333-1355.	1.3	1
44	On vertex-parity edge-colorings. Journal of Combinatorial Optimization, 2018, 35, 373-388.	1.3	5
45	Graphs preserving total distance upon vertex removal. Electronic Notes in Discrete Mathematics, 2018, 68, 107-112.	0.4	1
46	Distance based indices in nanotubical graphs: part 1. Journal of Mathematical Chemistry, 2018, 56, 2801-2815.	1.5	3
47	Graphs preserving Wiener index upon vertex removal. Applied Mathematics and Computation, 2018, 338, 25-32.	2.2	8
48	Mostar index. Journal of Mathematical Chemistry, 2018, 56, 2995-3013.	1.5	79
49	Distance based indices in nanotubical graphs: part 2. Journal of Mathematical Chemistry, 2018, 56, 3076-3088.	1.5	2
50	Convexity result and trees with large Balaban index. Applied Mathematics and Nonlinear Sciences, 2018, 3, 433-446.	1.6	12
51	Extending Perfect Matchings to Gray Codes with Prescribed Ends. Electronic Journal of Combinatorics, 2018, 25, .	0.4	2
52	On the minimum value of sum-Balaban index. Applied Mathematics and Computation, 2017, 303, 203-210.	2.2	1
53	Leapfrog fullerenes and Wiener index. Applied Mathematics and Computation, 2017, 309, 281-288.	2.2	5
54	On the difference between the Szeged and the Wiener index. Applied Mathematics and Computation, 2017, 312, 202-213.	2.2	10

#	Article	IF	CITATIONS
55	Remarks on maximum atom-bond connectivity index with given graph parameters. Discrete Applied Mathematics, 2017, 222, 222-226.	0.9	16
56	Remarks on the Graovac–Ghorbani index of bipartite graphs. Applied Mathematics and Computation, 2017, 293, 370-376.	2.2	5
57	Relative edge betweenness centrality. Ars Mathematica Contemporanea, 2017, 12, 261-270.	0.6	5
58	A note on acyclic number of planar graphs. Ars Mathematica Contemporanea, 2017, 13, 317-322.	0.6	2
59	Star Edge Coloring of Some Classes of Graphs. Journal of Graph Theory, 2016, 81, 73-82.	0.9	26
60	Digraphs with large maximum Wiener index. Applied Mathematics and Computation, 2016, 284, 260-267.	2.2	12
61	Distances on nanotubical structures. Journal of Mathematical Chemistry, 2016, 54, 1575-1584.	1.5	7
62	Closeness centralization measure for two-mode data of prescribed sizes. Network Science, 2016, 4, 474-490.	1.0	2
63	A search for the minimum value of Balaban index. Applied Mathematics and Computation, 2016, 286, 301-310.	2.2	4
64	Orientations of graphs with maximum Wiener index. Discrete Applied Mathematics, 2016, 211, 121-129.	0.9	29
65	Mapping planar graphs into the Coxeter graph. Discrete Mathematics, 2016, 339, 839-849.	0.7	1
66	Some remarks on Wiener index of oriented graphs. Applied Mathematics and Computation, 2016, 273, 631-636.	2.2	16
67	A measure for a balanced workload and its extremal values. Discrete Applied Mathematics, 2016, 200, 59-66.	0.9	2
68	Time-Optimal Broadcasting of Multiple Messages in 1-in Port Model. Lecture Notes in Computer Science, 2016, , 144-158.	1.3	1
69	Mathematical aspects of Wiener index. Ars Mathematica Contemporanea, 2016, 11, 327-352.	0.6	99
70	Mathematical aspects of fullerenes. Ars Mathematica Contemporanea, 2016, 11, 353-379.	0.6	32
71	Odd edge-colorability of subcubic graphs. Ars Mathematica Contemporanea, 2016, 10, 359-370.	0.6	7
72	Extremal graphs with respect to vertex betweenness centrality for certain graph families. Filomat, 2016, 30, 3123-3130.	0.5	0

#	Article	IF	CITATIONS
73	Rooted level-disjoint partitions of Cartesian products. Applied Mathematics and Computation, 2015, 266, 244-258.	2.2	5
74	Centralization of transmission in networks. Discrete Mathematics, 2015, 338, 2412-2420.	0.7	14
75	Group centralization of network indices. Discrete Applied Mathematics, 2015, 186, 147-157.	0.9	4
76	An inequality between the edge-Wiener index and the Wiener index of a graph. Applied Mathematics and Computation, 2015, 269, 714-721.	2.2	8
77	Sandwiching the (generalized) Randić index. Discrete Applied Mathematics, 2015, 181, 160-166.	0.9	12
78	â""-facial edge colorings of graphs. Discrete Applied Mathematics, 2015, 181, 193-200.	0.9	6
79	Comparing the irregularity and the total irregularity of graphs. Ars Mathematica Contemporanea, 2015, 9, 45-50.	0.6	28
80	Counterexamples to a conjecture on injective colorings. Ars Mathematica Contemporanea, 2015, 8, 291-295.	0.6	5
81	Odd edge coloring of graphs. Ars Mathematica Contemporanea, 2015, 9, 267-277.	0.6	14
82	Strong edge-coloring of planar graphs. Discrete Mathematics, 2014, 324, 41-49.	0.7	21
83	Complete solution of equationW(L3(T))=W(T)for the Wiener index of iterated line graphs of trees. Discrete Applied Mathematics, 2014, 171, 90-103.	0.9	3
84	Relationship between the edge-Wiener index and the Gutman index of a graph. Discrete Applied Mathematics, 2014, 167, 197-201.	0.9	17
85	Replication in critical graphs and the persistence of monomial ideals. Journal of Combinatorial Theory - Series A, 2014, 123, 239-251. Sufficient sparseness conditions for combinath xmlns:mml="http://www.w3.org/1998/Math/MathMI"	0.8	29
86	altimg="si1.gif" display="inline" overflow="scroll"> <mml:msup><mml:mrow><mml:mi>G</mml:mi></mml:mrow><mml:mrow><mml:mn>2be<mml:math <br="" altimg="si2.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mo><<mml:mo><mml:mo><ml:mi>{"<mml:mo>+</mml:mo><ml:mn></ml:mn></ml:mi></mml:mo></mml:mo></mml:mo></mml:math></mml:mn></mml:mrow></mml:msup>	nl:mn> <td>nml;mrow></td>	nml;mrow>
87	when <mml:. 162,="" 167-176.<br="" 2014,="" applied="" discrete="" mathematics,="">Trees T satisfying W(L3(T))= W(T). Filomat, 2014, 28, 551-556.</mml:.>	0.5	2
88	On the connectivity of Cartesian product of graphs. Ars Mathematica Contemporanea, 2014, 7, 293-297.	0.6	3
89	Improved bound on facial parity edge coloring. Discrete Mathematics, 2013, 313, 2218-2222.	0.7	8
90	Deterministic self-similar models of complex networks based on very symmetric graphs. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 4629-4637.	2.6	7

#	Article	IF	CITATIONS
91	On the mutually independent Hamiltonian cycles in faulty hypercubes. Information Sciences, 2013, 236, 224-235.	6.9	8
92	Line graph operation and small worlds. Information Processing Letters, 2013, 113, 196-200.	0.6	1
93	Wiener index of iterated line graphs of trees homeomorphic toH. Discrete Mathematics, 2013, 313, 1104-1111.	0.7	5
94	Linear time construction of a compressed Gray code. European Journal of Combinatorics, 2013, 34, 69-81.	0.8	2
95	Wiener index of iterated line graphs of trees homeomorphic to the claw K_1,3. Ars Mathematica Contemporanea, 2013, 6, 211-219.	0.6	9
96	Queue Layouts of Hypercubes. SIAM Journal on Discrete Mathematics, 2012, 26, 77-88.	0.8	2
97	The Wiener index in iterated line graphs. Discrete Applied Mathematics, 2012, 160, 2234-2245.	0.9	15
98	Some results on Vizing's conjecture and related problems. Discrete Applied Mathematics, 2012, 160, 2484-2490.	0.9	8
99	Acyclic edge coloring of planar graphs with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si33.gif" display="inline" overflow="scroll"><mml:mi>î"</mml:mi> colors. Discrete Applied Mathematics, 2012, 160, 1356-1368</mml:math 	0.9	5
100	Some remarks on inverse Wiener index problem. Discrete Applied Mathematics, 2012, 160, 1851-1858.	0.9	5
101	Hyperbolic analogues of fullerenes on orientable surfaces. Discrete Mathematics, 2012, 312, 729-736.	0.7	4
102	Brooks' Theorem for generalized dart graphs. Information Processing Letters, 2012, 112, 200-204.	0.6	0
103	Bipartizing fullerenes. European Journal of Combinatorics, 2012, 33, 1286-1293.	0.8	7
104	Parity vertex colorings of binomial trees. Discussiones Mathematicae - Graph Theory, 2012, 32, 177.	0.3	4
105	A note on Zagreb indices inequality for trees and unicyclic graphs. Ars Mathematica Contemporanea, 2012, 5, 73-76.	0.6	2
106	On the queue-number of the hypercube. Electronic Notes in Discrete Mathematics, 2011, 38, 413-418.	0.4	0
107	Graphs with Odd Cycle Lengths 5 and 7 are 3-Colorable. SIAM Journal on Discrete Mathematics, 2011, 25, 1069-1088.	0.8	6
108	On the 2-Resonance of Fullerenes. SIAM Journal on Discrete Mathematics, 2011, 25, 1737-1745.	0.8	4

#	Article	IF	CITATIONS
109	Graphs with Two Crossings Are 5-Choosable. SIAM Journal on Discrete Mathematics, 2011, 25, 1746-1753.	0.8	7
110	On the Zagreb index inequality of graphs with prescribed vertex degrees. Discrete Applied Mathematics, 2011, 159, 852-858.	0.9	5
111	Randić index and the diameter of a graph. European Journal of Combinatorics, 2011, 32, 434-442.	0.8	24
112	Contour map patterns. Journal of Mathematics and the Arts, 2011, 5, 129-140.	0.2	3
113	Nonâ€rainbow colorings of 3â€r 4―and 5â€connected plane graphs. Journal of Graph Theory, 2010, 63, 129-145	.0.9	2
114	Cyclic 7-edge-cuts in fullerene graphs. Journal of Mathematical Chemistry, 2010, 47, 771-789.	1.5	15
115	Backbone colorings of graphs with bounded degree. Discrete Applied Mathematics, 2010, 158, 534-542.	0.9	10
116	Facial colorings using Hall's Theorem. European Journal of Combinatorics, 2010, 31, 1001-1019.	0.8	8
117	An improved linear bound on the number of perfect matchings in cubic graphs. European Journal of Combinatorics, 2010, 31, 1316-1334.	0.8	6
118	On generalized middle-level problem. Information Sciences, 2010, 180, 2448-2457.	6.9	12
119	3-Choosability of Triangle-Free Planar Graphs with Constraints on 4-Cycles. SIAM Journal on Discrete Mathematics, 2010, 24, 934-945.	0.8	12
120	<i>k</i> -Chromatic Number of Graphs on Surfaces. SIAM Journal on Discrete Mathematics, 2009, 23, 477-486.	0.8	0
121	Backbone Colorings and Generalized Mycielski Graphs. SIAM Journal on Discrete Mathematics, 2009, 23, 1063-1070.	0.8	5
122	Injective colorings of planar graphs with few colors. Discrete Mathematics, 2009, 309, 5636-5649.	0.7	38
123	Planar graphs without 3-, 7-, and 8-cycles are 3-choosable. Discrete Mathematics, 2009, 309, 5899-5904.	0.7	10
124	Long cycles in fullerene graphs. Journal of Mathematical Chemistry, 2009, 45, 1021-1031.	1.5	4
125	Distance constrained labelings of planar graphs with no short cycles. Discrete Applied Mathematics, 2009, 157, 2634-2645.	0.9	8
196	Homomorphisms of triangle-free graphs without a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline"</mml:math 	0.7	6

126 overflow="scroll"><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m

#	Article	IF	CITATIONS
127	Cyclic edge-cuts in fullerene graphs. Journal of Mathematical Chemistry, 2008, 44, 121-132.	1.5	34
128	Coloring squares of planar graphs with girth six. European Journal of Combinatorics, 2008, 29, 838-849.	0.8	57
129	List-Coloring Squares of Sparse Subcubic Graphs. SIAM Journal on Discrete Mathematics, 2008, 22, 139-159.	0.8	21
130	3-Facial Coloring of Plane Graphs. SIAM Journal on Discrete Mathematics, 2008, 22, 231-247.	0.8	17
131	Cycles Intersecting Edge-Cuts of Prescribed Sizes. SIAM Journal on Discrete Mathematics, 2008, 22, 861-874.	0.8	20
132	Planar Graphs of Odd-Girth at Least 9 are Homomorphic to the Petersen Graph. SIAM Journal on Discrete Mathematics, 2008, 22, 568-591.	0.8	9
133	Total-Coloring of Plane Graphs with Maximum Degree Nine. SIAM Journal on Discrete Mathematics, 2008, 22, 1462-1479.	0.8	53
134	A Generalization of Kotzig's Theorem and Its Application. SIAM Journal on Discrete Mathematics, 2007, 21, 93-106.	0.8	8
135	T-joins intersecting small edge-cuts in graphs. Journal of Graph Theory, 2007, 56, 64-71.	0.9	1
136	On cube-free median graphs. Discrete Mathematics, 2007, 307, 345-351.	0.7	9
137	Lightness, heaviness and gravity. Discrete Mathematics, 2007, 307, 939-951. The 7-cycle <mml:math <="" altimg="si2.gif" overflow="scroll" td=""><td>0.7</td><td>2</td></mml:math>	0.7	2
138	xmlns:xocs= http://www.elsevier.com/xml/xocs/dtd_xmlns:xs= http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.7	18
139	xmins:sb= http://www.elsevier.com/xmi/common/struct-bib/dtd xmlns:ce= "http://www.elsevier.com/x Cyclic, diagonal and facial coloringsa€"a missing case. European Journal of Combinatorics, 2007, 28, 1637-1639.	0.8	10
140	Four gravity results. Discrete Mathematics, 2007, 307, 181-190.	0.7	0
141	The circular chromatic index of graphs of high girth. Journal of Combinatorial Theory Series B, 2007, 97, 1-13.	1.0	11
142	Construction of Large Graphs with No Optimal Surjective L(2,1)-Labelings. SIAM Journal on Discrete Mathematics, 2006, 20, 536-543.	0.8	7
143	A Theorem About a Contractible and Light Edge. SIAM Journal on Discrete Mathematics, 2006, 20, 55-61.	0.8	4
144	A map colour theorem for the union of graphs. Journal of Combinatorial Theory Series B, 2006, 96, 20-37.	1.0	5

#	Article	IF	CITATIONS
145	Colorings Of Plane Graphs With No Rainbow Faces. Combinatorica, 2006, 26, 169-182.	1.2	18
146	The last excluded case of Dirac's map-color theorem for choosability. Journal of Graph Theory, 2006, 51, 319-354.	0.9	5
147	Roots of cube polynomials of median graphs. Journal of Graph Theory, 2006, 52, 37-50.	0.9	14
148	Generalized list T-colorings of cycles. Discrete Applied Mathematics, 2005, 148, 13-25.	0.9	1
149	Nowhere-zero 3-flows in abelian Cayley graphs. Discrete Mathematics, 2005, 297, 119-127.	0.7	13
150	Coloring face hypergraphs on surfaces. European Journal of Combinatorics, 2005, 26, 95-110.	0.8	10
151	Cyclic, diagonal and facial colorings. European Journal of Combinatorics, 2005, 26, 473-490.	0.8	17
152	Nordhaus-Gaddum-type Theorems for decompositions into many parts. Journal of Graph Theory, 2005, 50, 273-292.	0.9	14
153	A Brooks-Type Theorem for the Generalized List T-Coloring. SIAM Journal on Discrete Mathematics, 2005, 19, 588-609.	0.8	8
154	Subdivisions of large complete bipartite graphs and long induced paths ink-connected graphs. Journal of Graph Theory, 2004, 45, 270-274.	0.9	5
155	Planar graph colorings without short monochromatic cycles. Journal of Graph Theory, 2004, 46, 25-38.	0.9	6
156	A revival of the girth conjecture. Journal of Combinatorial Theory Series B, 2004, 92, 41-53.	1.0	20
157	Heavy paths, light stars, and big melons. Discrete Mathematics, 2004, 286, 115-131.	0.7	16
158	Borodin's conjecture on diagonal coloring is false. European Journal of Combinatorics, 2004, 25, 813-816.	0.8	0
159	A theorem on integer flows on cartesian products of graphs. Journal of Graph Theory, 2003, 43, 93-98.	0.9	14
160	Light subgraphs in planar graphs of minimum degree 4 and edge-degree 9. Journal of Graph Theory, 2003, 44, 261-295.	0.9	40
161	The Petersen graph is not 3-edge-colorable—a new proof. Discrete Mathematics, 2003, 268, 325-326.	0.7	6
162	Quasi-median graphs, their generalizations, and tree-like equalities. European Journal of Combinatorics, 2003, 24, 557-572.	0.8	12

#	Article	IF	CITATIONS
163	A Theorem about the Channel Assignment Problem. SIAM Journal on Discrete Mathematics, 2003, 16, 426-437.	0.8	91
164	The Cube Polynomial and its Derivatives: the Case of Median Graphs. Electronic Journal of Combinatorics, 2003, 10, .	0.4	16
165	Hajós' theorem for list colorings of hypergraphs. Discussiones Mathematicae - Graph Theory, 2003, 23, 207.	0.3	0
166	On the critical point-arboricity graphs. Journal of Graph Theory, 2002, 39, 50-61.	0.9	11
167	Tiled partial cubes. Journal of Graph Theory, 2002, 40, 91-103.	0.9	11
168	Planar Graphs Without Cycles of Specific Lengths. European Journal of Combinatorics, 2002, 23, 377-388.	0.8	54
169	Cubes polynomial and its derivatives. Electronic Notes in Discrete Mathematics, 2001, 10, 47-49.	0.4	1
170	Two relations for median graphs. Discrete Mathematics, 2001, 226, 351-353.	0.7	16
171	Gallai's innequality for critical graphs of reducible hereditary properties. Discussiones Mathematicae - Graph Theory, 2001, 21, 167.	0.3	1
172	Nowhere-zero \$k\$-flows of Supergraphs. Electronic Journal of Combinatorics, 2001, 8, .	0.4	0
173	On median graphs and median grid graphs. Discrete Mathematics, 2000, 219, 287-293.	0.7	12
174	List improper colorings of planar graphs with prescribed girth. Discrete Mathematics, 2000, 214, 221-233.	0.7	33
175	Graphs of degree 4 are 5-edge-choosable. Journal of Graph Theory, 1999, 32, 250-264.	0.9	25
176	List Improper Colourings of Planar Graphs. Combinatorics Probability and Computing, 1999, 8, 293-299.	1.3	79
177	A Grötzsch-Type Theorem for List Colourings with Impropriety One. Combinatorics Probability and Computing, 1999, 8, 493-507.	1.3	19
178	The Grötzsch Theorem for the Hypergraph of Maximal Cliques. Electronic Journal of Combinatorics, 1999, 6, .	0.4	38
179	An Euler-type formula for median graphs. Discrete Mathematics, 1998, 187, 255-258.	0.7	21
180	Choosability of K5-minor-free graphs. Discrete Mathematics, 1998, 190, 223-226.	0.7	20

#	Article	IF	CITATIONS
181	On list edge-colorings of subcubic graphs. Discrete Mathematics, 1998, 187, 137-149.	0.7	9
182	List Total Colourings of Graphs. Combinatorics Probability and Computing, 1998, 7, 181-188.	1.3	34