Dilson Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8858466/publications.pdf

Version: 2024-02-01

236925 233421 2,301 86 25 45 citations h-index g-index papers 91 91 91 2694 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cyclohexane oxidation continues to be a challenge. Applied Catalysis A: General, 2001, 211, 1-17.	4.3	604
2	Acidity of Beta zeolite determined by TPD of ammonia and ethylbenzene disproportionation. Applied Catalysis A: General, 1999, 182, 107-113.	4.3	88
3	Selective synthesis of glycerol monolaurate with zeolitic molecular sieves. Applied Catalysis A: General, 2000, 203, 321-328.	4.3	85
4	Rietveld refinement and solid state NMR study of Nd-, Sm-, Gd-, and Dy-containing Y zeolites. Microporous and Mesoporous Materials, 2000, 41, 281-293.	4.4	71
5	Preparation of different basic Si–MCM-41 catalysts and application in the Knoevenagel and Claisen–Schmidt condensation reactions. Journal of Catalysis, 2010, 271, 220-227.	6.2	69
6	Glucose–fructose isomerisation promoted by basic hybrid catalysts. Catalysis Today, 2012, 195, 114-119.	4.4	65
7	Surfactant containing Si-MCM-41: An efficient basic catalyst for the Knoevenagel condensation. Applied Catalysis A: General, 2006, 312, 77-85.	4.3	63
8	A simple synthesis procedure to prepare nanosized faujasite crystals. Microporous and Mesoporous Materials, 2012, 161, 67-75.	4.4	61
9	Influence of surfactant chain length on basic catalytic properties of Si-MCM-41. Microporous and Mesoporous Materials, 2007, 106, 8-16.	4.4	48
10	Zeolite supported Pt-Ni catalysts in n-hexane isomerization. Applied Catalysis A: General, 2007, 319, 1-6.	4.3	44
11	Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations. Catalysis Today, 2008, 133-135, 706-710.	4.4	44
12	Isomerization of n-hexane on Pt–Ni catalysts supported on nanocrystalline H-BEA zeolite. Catalysis Today, 2011, 172, 195-202.	4.4	41
13	n-Hexane isomerization on Ni-Pt catalysts/supported on HUSY zeolite: The influence from a metal content. Catalysis Today, 2005, 107-108, 693-698.	4.4	39
14	Effect of metal–acid site balance on hydroconversion of decalin over Pt/Beta zeolite bifunctional catalysts. Fuel, 2015, 160, 71-79.	6.4	39
15	As-synthesized TEA-BEA zeolite: Effect of Si/Al ratio on the Knoevenagel condensation. Microporous and Mesoporous Materials, 2015, 202, 198-207.	4.4	36
16	lon exchange and catalytic properties of methylammonium FAU zeolite. Microporous and Mesoporous Materials, 2007, 98, 166-173.	4.4	33
17	Methylammonium-FAU zeolite: Investigation of the basic sites in base catalyzed reactions and its performance. Journal of Catalysis, 2008, 258, 14-24.	6.2	33
18	Basic catalytic properties of as-synthesized molecular sieves. Microporous and Mesoporous Materials, 2009, 120, 206-213.	4.4	30

#	Article	IF	Citations
19	On the understanding of the remarkable activity of template-containing mesoporous molecular sieves in the transesterification of rapeseed oil with ethanol. Journal of Catalysis, 2010, 276, 190-196.	6.2	30
20	Characterization and Catalytic Properties of MAPO-36 and MAPO-5: Effect of Magnesium Content. Journal of Catalysis, 2002, 205, 299-308.	6.2	29
21	MgAlLi Mixed Oxides Derived from Hydrotalcite for Catalytic Transesterification. Catalysis Letters, 2011, 141, 1316-1323.	2.6	29
22	Efficiency of ethanol conversion induced by controlled modification of pore structure and acidic properties of alumina catalysts. Applied Catalysis A: General, 2011, 398, 59-65.	4.3	28
23	Characterization and Catalytic Evaluation of SAPO-5 Synthesized in Aqueous and Two-Liquid Phase Medium in Presence of a Cationic Surfactant. Journal of Catalysis, 1998, 173, 501-510.	6.2	27
24	Properties of faujasite zeolites containing methyl-substituted ammonium cations. Journal of Catalysis, 2012, 294, 151-160.	6.2	27
25	Sodium titanate as basic catalyst in transesterification reactions. Fuel, 2014, 118, 48-54.	6.4	26
26	Encapsulation of polymers in CTA-MCM-41 via microemulsion. Microporous and Mesoporous Materials, 2013, 180, 14-21.	4.4	24
27	Aplicação catalÃŧica de peneiras moleculares básicas micro e mesoporosas. Quimica Nova, 2006, 29, 358-364.	0.3	23
28	Incorporation of Iron(III) and Chromium(III) in SAPO-37. Zeolites, 1997, 19, 6-12.	0.5	21
29	Sorption kinetics of linear paraffins in zeolite BEA nanocrystals. Microporous and Mesoporous Materials, 2008, 116, 352-357.	4.4	21
30	Disproportionation of ethylbenzene over deeply dealuminated Y zeolites. Applied Catalysis A: General, 1995, 127, 157-164.	4.3	20
31	Oxidation of hydrocarbons with peroxides catalyzed by chromium(III) and iron(III) incorporated in SAPO-37 framework. Applied Catalysis A: General, 1999, 185, L193-L197.	4.3	20
32	Synthesis of TS-1 Molecular Sieves Using a New Ti Source. Journal of Physical Chemistry B, 2006, 110, 15080-15084.	2.6	20
33	Bifunctional Ni, Pt Zeolite Catalysts for the isomerization of n-hexane. Studies in Surface Science and Catalysis, 2000, 130, 2387-2392.	1.5	19
34	Basic activity of Y zeolite containing alkylammonium cations in Knoevenagel condensation. Catalysis Today, 2013, 213, 122-126.	4.4	18
35	Esterification of lauric acid with glycerol using modified zeolite beta as catalyst. Studies in Surface Science and Catalysis, 2000, 130, 3417-3422.	1.5	17
36	Synthesis and characterization of MAPO-11 molecular sieves. Microporous and Mesoporous Materials, 2002, 53, 135-144.	4.4	17

#	Article	IF	Citations
37	Catalytic evaluation of MCM-41 hybrid silicas in the transesterification reactions. Microporous and Mesoporous Materials, 2019, 284, 265-275.	4.4	17
38	A new activation process of bimetallic catalysts and application to the n-hexane isomerization. Applied Catalysis A: General, 2009, 355, 20-26.	4.3	16
39	Monitoring of the crystallization of zeolite LTA using Raman and chemometric tools. Analyst, The, 2015, 140, 854-859.	3.5	16
40	n-Hexane isomerization on Pt/HMOR: effect of platinum content. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 473-485.	1.7	15
41	Synthesis of hybrid spherical silicas and application in catalytic transesterification reaction. Microporous and Mesoporous Materials, 2017, 254, 37-44.	4.4	15
42	Effects of Different Variables on the Formation of Mesopores in Y Zeolite by the Action of CTA+ Surfactant. Applied Sciences (Switzerland), 2018, 8, 1299.	2.5	15
43	Evolution of Structure and Active Sites during the Synthesis of ZSM-5: From Amorphous to Fully Grown Structure. Journal of Physical Chemistry C, 2020, 124, 2439-2449.	3.1	15
44	Influence of combined acid treatment on physico-chemical characteristics of ultrastable zeolite Y and on its catalytic properties in the disproportionation of ethylbenzene. Applied Catalysis A: General, 1997, 148, 373-385.	4.3	13
45	Properties of [Ti,Al]-beta with different titanium content. Zeolites, 1997, 19, 416-421.	0.5	13
46	Microwave-Assisted Regiospecific Synthesis of 2-Trifluoromethyl-7-Trihalomethylated Pyrazolo[1,5-a]Pyrimidines. Letters in Organic Chemistry, 2006, 3, 358-362.	0.5	13
47	Synthesis and properties of MCM-41 with polymerizable CADMA cationic surfactant. Catalysis Today, 2017, 289, 2-13.	4.4	13
48	Influence des conditions de traitement hydrothermique sur les caractéristiques physicochimiques des zéolithes Y. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1990, 87, 271-288.	0.2	13
49	The influence of Si/Al and Si/Ti molar ratios of different [Ti, Al]-beta catalysts in the partial oxidation of cyclohexene with hydrogen peroxide. Microporous and Mesoporous Materials, 2010, 136, 97-105.	4.4	12
50	Synthesis and Characterization of AlPO4-36 and MAPO-36 with Different Magnesium Content. Chemistry of Materials, 1999, 11, 3238-3244.	6.7	11
51	Cracking of 1,3,5-triisopropylbenzene over deeply dealuminated Y zeolite. Studies in Surface Science and Catalysis, 1995, 97, 417-422.	1.5	10
52	The influence of gel alkalinity in the synthesis and physicochemical properties of the zeolite [Ti,Al]-Beta. Microporous and Mesoporous Materials, 2008, 113, 204-211.	4.4	10
53	One-Step Synthesis of Functionalized ZSM-12 Zeolite as a Hybrid Basic Catalyst. Catalysis Letters, 2016, 146, 2200-2213.	2.6	10
54	Effect of Hydrothermal Treatment on Structural and Catalytic Properties of [CTA]-MCM-41 Silica. Materials, 2018, 11, 860.	2.9	9

#	Article	IF	Citations
55	Synthesis and properties of hybrid silicas containing alkylammonium surfactants. Catalysis Today, 2020, 344, 41-51.	4.4	9
56	Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization. Brazilian Journal of Chemical Engineering, 2009, 26, 353-360.	1.3	8
57	Properties and catalytic evaluation of nanometric X zeolites containing linear alkylammonium cations. Molecular Catalysis, 2018, 458, 127-138.	2.0	8
58	Investigation of the structural order and stability of mesoporous silicas under a humid atmosphere. Materials Characterization, 2019, 154, 103-115.	4.4	8
59	Enhancing the accessibility to basic sites of as-synthesized silicas applied in catalytic transesterification. Applied Surface Science, 2020, 507, 145159.	6.1	8
60	Influence of the Si/Al ratio and ZSM-5 crystallite size on the methylation of toluene. Catalysis Today, 1989, 5, 515-521.	4.4	7
61	Synthesis and properties of Ti-MOR molecular sieve on the oxidation of cyclohexene: Influence of the Ti source. Catalysis Today, 2005, 107-108, 844-848.	4.4	7
62	Method of contribution of groups to estimate thermodynamic properties of components of biodiesel formation in liquid phase. Fluid Phase Equilibria, 2012, 317, 59-64.	2.5	7
63	Amine-grafted Na-LTA zeolite precursors as basic catalysts for Knoevenagel condensation. Microporous and Mesoporous Materials, 2021, 324, 111270.	4.4	7
64	Improved accessibility of Na-LTA zeolite catalytic sites for the Knoevenagel condensation reaction. Microporous and Mesoporous Materials, 2022, 331, 111640.	4.4	7
65	Nanosized Particles of X Zeolite Containing Ammonium Cations as Basic Catalysts. Catalysis Letters, 2017, 147, 880-892.	2.6	6
66	Synthesis of zeolite beta with low template content. Studies in Surface Science and Catalysis, 1997, , 349-356.	1.5	5
67	Characterization of Pt/HUSY and Pt-Ni/HUSY catalysts by transmission electron microscopy. Materials Research, 1999, 2, 219-223.	1.3	5
68	Preparação e propriedades de zeólitas faujasita contendo cátions amônio. Quimica Nova, 2010, 33, 1077-1081.	0.3	5
69	Hybrid silica with bimodal mesopore system: Synthesis and catalytic evaluation. Journal of Molecular Catalysis A, 2016, 422, 51-58.	4.8	5
70	Faujasites exchanged with alkylammonium cations applied to basic catalysis. Microporous and Mesoporous Materials, 2019, 282, 159-168.	4.4	5
71	Ethylbenzene Disproportionation on HZSM-5 Zeolite: The Effect of Aluminum Content and Crystal Size on the Selectivity for p-Diethylbenzene. Brazilian Journal of Chemical Engineering, 1998, 15, 184-190.	1.3	5
72	Produção de etilenoglicóis e derivados por reaçÃμes catalÃŧicas do óxido de eteno. Quimica Nova, 2005, 28, 264-273.	0.3	4

#	Article	IF	CITATIONS
73	Catalytic transesterification using a silica hybrid containing encapsulated polyacrylates. Applied Catalysis A: General, 2017, 548, 83-88.	4.3	4
74	Study of Acetylsalicylic Acid Adsorption Using Molecular Sieves. Adsorption Science and Technology, 2015, 33, 203-221.	3.2	3
75	Catalytic transesterification by hybrid silicas containing CnTA+ surfactants. Catalysis Today, 2020, 356, 433-439.	4.4	3
76	Catalysis Update from Brazil. Cattech, 2003, 7, 6-9.	2.2	2
77	Synthesis of niobium molecular sieves with a new Nb source and catalytic oxidation of cyclohexene. Studies in Surface Science and Catalysis, 2005, 156, 163-170.	1.5	2
78	Basic catalysis by surfactant containing MCM-41. Studies in Surface Science and Catalysis, 2007, 165, 761-764.	1.5	1
79	Sorption kinetics of linear paraffins in zeolite BEA nanocrystals. Microporous and Mesoporous Materials, 2009, 124, 236-237.	4.4	1
80	SYNTHESIS AND PROPERTIES OF HYBRID SILICAS CONTAINING CETYLTRIALKYLAMMONIUN SURFACTANTS. Quimica Nova, 2016, , .	0.3	1
81	CATALYTIC PROPERTIES OF NANOMETRIC ZEOLITE X CONTAINING METHYLAMMONIUM CATIONS. Quimica Nova, 2016, , .	0.3	1
82	Mesoporous Silicas as Basic Heterogeneous Catalysts for the Formation of Biodiesel. Advances in Chemical and Materials Engineering Book Series, 2018, , 119-155.	0.3	1
83	Kinetic study of ethyl ester transesterification using a hybrid silica catalyst. Reaction Kinetics, Mechanisms and Catalysis, 0, , .	1.7	1
84	Preparation and Use of Organic-Inorganic Hybrid Ion Exchangers in Catalysis., 2012,, 453-465.		0
85	BASE CATALYSIS USING MESOPOROUS SILICA STABILIZED BY ENCAPSULATED ACRYLATES. Quimica Nova, 2014, , .	0.3	0
86	Zeolitic imidazolate frameworks containing Zn as catalysts for the Knoevenagel condensation reaction. Brazilian Journal of Chemical Engineering, 0, , 1 .	1.3	0