
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8858422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy and Environmental Science, 2020, 13, 503-510.	30.8	828
2	Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO ₂ –Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors. ACS Nano, 2017, 11, 2952-2960.	14.6	542
3	Effective regeneration of LiCoO ₂ from spent lithium-ion batteries: a direct approach towards high-performance active particles. Green Chemistry, 2018, 20, 851-862.	9.0	273
4	Resolving the Compositional and Structural Defects of Degraded LiNi _{<i>x</i>} Co _{<i>y</i>} Mn _{<i>z</i>} O ₂ Particles to Directly Regenerate High-Performance Lithium-Ion Battery Cathodes. ACS Energy Letters, 2018, 3, 1683-1692.	17.4	263
5	Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithiumâ€lon Storage. Advanced Materials, 2016, 28, 7580-7602.	21.0	224
6	Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance. ACS Applied Materials & amp; Interfaces, 2013, 5, 5330-5335.	8.0	199
7	Anionâ€Sorbent Composite Separators for Highâ€Rate Lithiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1808338.	21.0	178
8	Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale, 2016, 8, 8443-8465.	5.6	172
9	Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. Journal of Alloys and Compounds, 2011, 509, 4104-4107.	5.5	159
10	Graphene Caging Silicon Particles for Highâ€Performance Lithiumâ€Ion Batteries. Small, 2018, 14, e1800635.	10.0	146
11	Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1904020.	14.9	140
12	Metal–Organic Framework Hexagonal Nanoplates: Bottom-up Synthesis, Topotactic Transformation, and Efficient Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 7317-7321.	13.7	140
13	Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nature Communications, 2020, 11, 5215.	12.8	113
14	Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. Journal of the American Chemical Society, 2017, 139, 6644-6653.	13.7	112
15	Ultrafine Nb ₂ O ₅ Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery. ACS Applied Materials & Interfaces, 2016, 8, 22213-22219.	8.0	108
16	Microwave-assisted synthesis of hybrid CoxNi1â^'x(OH)2 nanosheets: Tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251, 338-343.	7.8	101
17	Engineering of carbon and other protective coating layers for stabilizing silicon anode materials. , 2019, 1, 219-245.		94
18	Oxygen Production of Modified Core–Shell CuO@ZrO ₂ Nanocomposites by Microwave Radiation to Alleviate Cancer Hypoxia for Enhanced Chemo-Microwave Thermal Therapy. ACS Nano, 2018, 12, 12721-12732.	14.6	92

#	Article	IF	CITATIONS
19	Layered Metal Hydroxides and Their Derivatives: Controllable Synthesis, Chemical Exfoliation, and Electrocatalytic Applications. Advanced Energy Materials, 2020, 10, 1902535.	19.5	90
20	2D Freeâ€6tanding Nitrogenâ€Doped Niâ€Ni ₃ S ₂ @Carbon Nanoplates Derived from Metal–Organic Frameworks for Enhanced Oxygen Evolution Reaction. Small, 2019, 15, e1900348.	10.0	88
21	A-site Excessive (La _{0.8} Sr _{0.2}) _{1+<i>x</i>} MnO ₃ Perovskite Oxides for Bifunctional Oxygen Catalyst in Alkaline Media. ACS Catalysis, 2019, 9, 5074-5083.	11.2	84
22	Novel rose-like ZnO nanoflowers synthesized by chemical vapor deposition. Materials Letters, 2009, 63, 496-499.	2.6	77
23	Facile synthesis of hierarchical MoS ₂ –carbon microspheres as a robust anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 9653-9660.	10.3	73
24	Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage. Nano Energy, 2019, 59, 464-471.	16.0	70
25	Post Iron Decoration of Mesoporous Nitrogenâ€Đoped Carbon Spheres for Efficient Electrochemical Oxygen Reduction. Advanced Energy Materials, 2017, 7, 1701154.	19.5	65
26	Edge-sited Fe-N4 atomic species improve oxygen reduction activity via boosting O2 dissociation. Applied Catalysis B: Environmental, 2020, 265, 118593.	20.2	63
27	Machine Learning in Screening High Performance Electrocatalysts for CO ₂ Reduction. Small Methods, 2021, 5, e2100987.	8.6	60
28	Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries. Nanoscale, 2014, 6, 3664-3669.	5.6	58
29	Solvothermal route based in situ carbonization to Fe3O4@C as anode material for lithium ion battery. Nano Energy, 2014, 8, 126-132.	16.0	57
30	Shape-controlled synthesis and characterization of cobalt oxides hollow spheres and octahedra. Dalton Transactions, 2012, 41, 5981.	3.3	54
31	Interfacial engineering of Mo ₂ C–Mo ₃ C ₂ heteronanowires for high performance hydrogen evolution reactions. Nanoscale, 2019, 11, 23318-23329.	5.6	54
32	Ni ₂ P ₂ O ₇ Nanoarrays with Decorated C ₃ N ₄ Nanosheets as Efficient Electrode for Supercapacitors. ACS Applied Energy Materials, 2018, 1, 2016-2023.	5.1	50
33	Porous TiO2 Conformal Coating on Carbon Nanotubes as Energy Storage Materials. Electrochimica Acta, 2015, 169, 73-81.	5.2	49
34	Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. , 2022, 4, 901-913.		49
35	Advanced Electrocatalytic Performance of Ni-Based Materials for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 341-349.	6.7	43
36	Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery. Nano Research, 2021, 14, 3538-3544.	10.4	43

#	Article	IF	CITATIONS
37	Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion. Nano Research, 2014, 7, 1093-1102.	10.4	42
38	Shape-Controlled Narrow-Gap SnTe Nanostructures: From Nanocubes to Nanorods and Nanowires. Journal of the American Chemical Society, 2015, 137, 15074-15077.	13.7	42
39	Encapsulation of SnO ₂ nanocrystals into hierarchically porous carbon by melt infiltration for high-performance lithium storage. Journal of Materials Chemistry A, 2016, 4, 18706-18710.	10.3	42
40	A facile microwave-assisted route to Co(OH)2 and Co3O4 nanosheet for Li-ion battery. Journal of Alloys and Compounds, 2013, 578, 349-354.	5.5	41
41	Hybrid Nanostructures of Bimetallic NiCo Nitride/N-Doped Reduced Graphene Oxide as Efficient Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 19612-19620.	6.7	41
42	Insights into the critical dual-effect of acid treatment on ZnxCd1-xS for enhanced photocatalytic production of syngas under visible light. Applied Catalysis B: Environmental, 2021, 288, 119976.	20.2	41
43	A Ternary Molten Salt Approach for Direct Regeneration of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode. Small, 2022, 18, e2106719.	10.0	41
44	Post-synthesis isomorphous substitution of layered Co–Mn hydroxide nanocones with graphene oxide as high-performance supercapacitor electrodes. Nanoscale, 2019, 11, 6165-6173.	5.6	39
45	Stabilizing CuGaS ₂ by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO ₂ reduction under visible light. Nanoscale, 2020, 12, 8693-8700.	5.6	39
46	Particulate Anion Sorbents as Electrolyte Additives for Lithium Batteries. Advanced Functional Materials, 2020, 30, 2003055.	14.9	38
47	MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Scientific Reports, 2017, 7, 40574.	3.3	36
48	β yclodextrin as Lithiumâ€ion Diffusion Channel with Enhanced Kinetics for Stable Silicon Anode. Energy and Environmental Materials, 2021, 4, 72-80.	12.8	36
49	Titanium Oxynitride Nanoparticles Anchored on Carbon Nanotubes as Energy Storage Materials. ACS Applied Materials & Interfaces, 2015, 7, 24212-24217.	8.0	35
50	Activating Hematite Nanoplates via Partial Reduction for Electrocatalytic Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 11841-11849.	6.7	35
51	Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Materials Science, 2020, 2, 264-280.	8.8	35
52	Nickel substituted LiMn2O4 cathode with durable high-rate capability for Li-ion batteries. RSC Advances, 2013, 3, 18441.	3.6	33
53	A facile hydrothermal route to iron(III) oxide with conductive additives as composite anode for lithium ion batteries. Journal of Power Sources, 2014, 259, 227-232.	7.8	33
54	All-in-one surface engineering strategy on nickel phosphide arrays towards a robust electrocatalyst for hydrogen evolution reaction. Journal of Power Sources, 2019, 429, 46-54.	7.8	33

#	Article	IF	CITATIONS
55	Facile synthesis of porous FeCo2O4 nanowire arrays on flexible carbon cloth with superior lithium storage properties. Journal of Physics and Chemistry of Solids, 2018, 122, 261-267.	4.0	32
56	Anticorrosive Copper Current Collector Passivated by Selfâ€Assembled Porous Membrane for Highly Stable Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2104930.	14.9	32
57	A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance. Journal of Power Sources, 2014, 265, 1-5.	7.8	31
58	Two-dimensional NiSe2 nanosheets on carbon fiber cloth for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2020, 821, 153218.	5.5	30
59	Tuning Interfacial Active Sites over Porous Mo ₂ N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 41573-41583.	8.0	30
60	Interconnected silicon nanoparticles originated from halloysite nanotubes through the magnesiothermic reduction: A high-performance anode material for lithium-ion batteries. Applied Clay Science, 2018, 162, 499-506.	5.2	29
61	Self-Supported Fe-Doped CoP Nanowire Arrays Grown on Carbon Cloth with Enhanced Properties in Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 406-412.	5.1	29
62	3D Network Binder via In Situ Crossâ€Linking on Silicon Anodes with Improved Stability for Lithiumâ€lon Batteries. Macromolecular Chemistry and Physics, 2020, 221, 1900414.	2.2	29
63	Molecular-Scale Manipulation of Layer Sequence in Heteroassembled Nanosheet Films toward Oxygen Evolution Electrocatalysts. ACS Nano, 2022, 16, 4028-4040.	14.6	29
64	Use of regenerated cellulose to direct hetero-assembly of nanoparticles with carbon nanotubes for producing flexible battery anodes. Journal of Materials Chemistry A, 2017, 5, 13944-13949.	10.3	28
65	Three-dimensionally interconnected Si frameworks derived from natural halloysite clay: a high-capacity anode material for lithium-ion batteries. Dalton Transactions, 2018, 47, 7522-7527.	3.3	28
66	Serpentine CoxNi3-xGe2O5(OH)4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes. Applied Catalysis B: Environmental, 2020, 260, 118184.	20.2	28
67	Highâ€Concentration Additive and Triiodide/Iodide Redox Couple Stabilize Lithium Metal Anode and Rejuvenate the Inactive Lithium in Carbonateâ€Based Electrolyte. Advanced Functional Materials, 2022, 32, .	14.9	28
68	A robust and lithiophilic three-dimension framework of CoO nanorod arrays on carbon cloth for cycling-stable lithium metal anodes. Materials Today Energy, 2020, 18, 100520.	4.7	27
69	Synthesis of Co(II)-Fe(III) Hydroxide Nanocones with Mixed Octahedral/Tetrahedral Coordination toward Efficient Electrocatalysis. Chemistry of Materials, 2020, 32, 4232-4240.	6.7	26
70	Iron-decorated nitrogen-rich carbons as efficient oxygen reduction electrocatalysts for Zn–air batteries. Nanoscale, 2018, 10, 16996-17001.	5.6	25
71	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets with Tailored Layers and Size for Efficient Oxygen Evolution Reactions. Small, 2018, 14, e1803015.	10.0	24
72	Microwave-assisted synthesis and electrochemical properties of urchin-like CuO micro-crystals. Solid State Sciences, 2011, 13, 2137-2141.	3.2	23

#	Article	IF	CITATIONS
73	Evaluation of the Catalytic Activity and Cytotoxicity of Palladium Nanocubes: The Role of Oxygen. ACS Applied Materials & Interfaces, 2015, 7, 9364-9371.	8.0	23
74	Quick Optical Identification of the Defect Formation in Monolayer WSe2 for Growth Optimization. Nanoscale Research Letters, 2019, 14, 274.	5.7	23
75	Cobalt iron phosphide nanoparticles embedded within a carbon matrix as highly efficient electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2019, 55, 9212-9215.	4.1	23
76	Synthesis of silicon nanosheets from kaolinite as a high-performance anode material for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2020, 137, 109227.	4.0	23
77	Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharmaceutica Sinica B, 2021, 11, 1175-1199.	12.0	23
78	Flower-like CuCoMoOx nanosheets decorated with CoCu nanoparticles as bifunctional electrocatalysts for hydrogen evolution reaction and water splitting. Electrochimica Acta, 2022, 404, 139748.	5.2	23
79	Controllable Fabrication and Optical Properties of Uniform Gadolinium Oxysulfate Hollow Spheres. Scientific Reports, 2016, 5, 17934.	3.3	22
80	Engineering Molybdenum Diselenide and Its Reduced Graphene Oxide Hybrids for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2018, 1, 2143-2152.	5.0	22
81	Lithium doped nickel oxide nanocrystals with a tuned electronic structure for oxygen evolution reaction. Chemical Communications, 2021, 57, 6070-6073.	4.1	22
82	Carbon Nanotube Supported Amorphous MoS ₂ via Microwave Heating Synthesis for Enhanced Performance of Hydrogen Evolution Reaction. Energy Material Advances, 2021, 2021, .	11.0	20
83	Thermally Robust Porous Bimetallic (Ni _{<i>x</i>} Pt _{1–<i>x</i>}) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2019, 11, 21435-21444.	8.0	18
84	Covalently Bonded Si–Polymer Nanocomposites Enabled by Mechanochemical Synthesis as Durable Anode Materials. ACS Applied Materials & Interfaces, 2020, 12, 39127-39134.	8.0	18
85	Facile synthesis and characterization of halloysite@W18O49 nanocomposite with enhanced photocatalytic properties. Applied Clay Science, 2019, 183, 105319.	5.2	16
86	Improved Sorptionâ€Enhanced Steam Methane Reforming via Calcium Oxide–Based Sorbents with Targeted Morphology. Energy Technology, 2019, 7, 1800807.	3.8	16
87	Composition Tuning of Ultrafine Cobalt-Based Spinel Nanoparticles for Efficient Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 5534-5543.	6.7	16
88	A Facile Solvothermal Synthesis and Magnetic Properties of <scp><scp>MnFe</scp></scp> ₂ <scp><scp>O</scp></scp> ₄ Spheres with Tunable Sizes. Journal of the American Ceramic Society, 2012, 95, 3569-3576.	3.8	15
89	Shape evolution and electrochemical properties of cobalt sulfide via a biomolecule-assisted solvothermal route. Solid State Sciences, 2013, 17, 102-106.	3.2	15
90	Layered rare-earth hydroxide nanocones with facile host composition modification and anion-exchange feature: topotactic transformation into oxide nanocones for upconversion. Nanoscale, 2017, 9, 8185-8191.	5.6	15

#	Article	IF	CITATIONS
91	Double Confined MoO ₂ /Sn/NC@NC Nanotubes: Solid–Liquid Synthesis, Conformal Transformation, and Excellent Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 19836-19845.	8.0	15
92	Electrolyte Modulators toward Polarizationâ€Mitigated Lithiumâ€Ion Batteries for Sustainable Electric Transportation. Advanced Materials, 2022, 34, e2107787.	21.0	15
93	Electroplating CuO nanoneedle arrays on Ni foam as superior 3D scaffold for dendrite-free and stable Li metal anode. Applied Surface Science, 2022, 599, 153955.	6.1	15
94	Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres. Materials Research Bulletin, 2012, 47, 2182-2187.	5.2	14
95	Controlled fabrication and optical properties of uniform CeO2 hollow spheres. RSC Advances, 2013, 3, 3544.	3.6	14
96	Upconversion luminescence of ytterbium and erbium co-doped gadolinium oxysulfate hollow nanoparticles. Applied Materials Today, 2018, 13, 381-386.	4.3	14
97	Ag1.69Sb2.27O6.25 coupled carbon nitride photocatalyst with high redox potential for efficient multifunctional environmental applications. Applied Surface Science, 2019, 487, 82-90.	6.1	14
98	Montmorillonite: A structural evolution from bulk through unilaminar nanolayers to nanotubes. Applied Clay Science, 2020, 194, 105695.	5.2	14
99	Anchoring Active Sites by Pt ₂ FeNi Alloy Nanoparticles on NiFe Layered Double Hydroxides for Efficient Electrocatalytic Oxygen Evolution Reaction. Energy and Environmental Materials, 2022, 5, 270-277.	12.8	14
100	3D multicore-shell CoSn nanoboxes encapsulated in porous carbon as anode for lithium-ion batteries. Chinese Chemical Letters, 2022, 33, 3925-3930.	9.0	14
101	Carbon coated Nb2O5 nanosheets via dopamine-induced phase transition for high-rate lithium-ion battery. Journal of Power Sources, 2022, 530, 231274.	7.8	14
102	Ruthenium composited NiCo2O4 spinel nanocones with oxygen vacancies as a high-efficient bifunctional catalyst for overall water splitting. Chemical Engineering Journal, 2022, 446, 137037.	12.7	14
103	Direct growth of mesoporous anatase TiO ₂ on nickel foam by soft template method as binder-free anode for lithium-ion batteries. RSC Advances, 2014, 4, 48938-48942.	3.6	13
104	Binder-Free Co ₄ N Nanoarray on Carbon Cloth as Flexible High-Performance Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 4432-4439.	5.1	13
105	Oxygen-deficient Niobium Oxide in Carbon Matrix as Anode for Lithium-Ion Battery. ECS Transactions, 2015, 66, 277-283.	0.5	12
106	Ultrathin Nanosheet-Assembled Co–Fe Hydroxide Nanotubes: Sacrificial Template Synthesis, Topotactic Transformation, and Their Application as Electrocatalysts for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 46578-46587.	8.0	12
107	Photo-irradiation tunes highly active sites over β-Ni(OH) ₂ nanosheets for the electrocatalytic oxygen evolution reaction. Chemical Communications, 2021, 57, 9060-9063.	4.1	12
108	Selective fabrication of porous iron oxides hollow spheres and nanofibers by electrospinning for photocatalytic water purification. Solid State Sciences, 2018, 82, 24-28.	3.2	11

#	Article	IF	CITATIONS
109	Activity enhancement of layered cobalt hydroxide nanocones by tuning interlayer spacing and phosphidation for electrocatalytic water oxidation in neutral solutions. Inorganic Chemistry Frontiers, 2019, 6, 1744-1752.	6.0	11
110	Hydrothermal synthesis of three-dimensional core-shell hollow N-doped carbon encapsulating SnO2@CoO nanospheres for high-performance lithium-ion batteries. Materials Today Energy, 2019, 14, 100354.	4.7	10
111	Luminescent Yttrium Oxide Nanosheets for Temperature Sensing. ACS Applied Nano Materials, 2021, 4, 12316-12324.	5.0	10
112	N-doped bimetallic sulfides hollow spheres derived from metal-organic frameworks toward cost-efficient and high performance oxygen evolution reaction. Applied Surface Science, 2022, 591, 153173.	6.1	10
113	Superlattice-Like Co-Doped Mn Oxide and NiFe Hydroxide Nanosheets toward an Energetic Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	9
114	Rare-earth-doped yttrium oxide nanoplatelets and nanotubes: controllable fabrication, topotactic transformation and upconversion luminescence. CrystEngComm, 2018, 20, 5025-5032.	2.6	7
115	Biomolecule-assisted hydrothermal synthesis and properties of manganese sulfide hollow microspheres. Journal of Physics and Chemistry of Solids, 2012, 73, 1385-1389.	4.0	6
116	Scalable Synthesis of Uniform Nanosized Microporous Carbon Particles from Rigid Polymers for Rapid Ion and Molecule Adsorption. ACS Applied Materials & Interfaces, 2018, 10, 25429-25437.	8.0	6
117	Alternate Restacking of 2 D CoNi Hydroxide and Graphene Oxide Nanosheets for Energetic Oxygen Evolution. ChemSusChem, 2019, 12, 5274-5281.	6.8	6
118	Heterostructured NiFe oxide/phosphide nanoflakes for efficient water oxidation. Dalton Transactions, 2019, 48, 8442-8448.	3.3	6
119	Multi-shelled cobalt–nickel oxide/phosphide hollow spheres for an efficient oxygen evolution reaction. Dalton Transactions, 2020, 49, 10918-10927.	3.3	6
120	Crossâ€Linked Polymer Binder via Phthalic Acid for Stabilizing SiO _x Anodes. Macromolecular Chemistry and Physics, 0, , 2200068.	2.2	6
121	Electronic configuration modulation of tin dioxide by phosphorus dopant for pathway change in electrocatalytic water oxidation. Inorganic Chemistry Frontiers, 2021, 9, 83-89.	6.0	5
122	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets Grow on Porous Mo ₂ N for an Efficient Oxygen Evolution Reaction. Energy & Fuels, 2022, 36, 11467-11476.	5.1	4
123	Silicon nanosheets derived from silicate minerals: controllable synthesis and energy storage application. Nanoscale, 2021, 13, 18410-18420.	5.6	3
124	Hierarchical NiFeV hydroxide nanotubes: synthesis, topotactic transformation and electrocatalysis towards the oxygen evolution reaction. Dalton Transactions, 2022, 51, 11098-11107.	3.3	3
125	Quasi Solidâ€state Electrolytes of Li ₂ Sn ₂ (bdc) ₃ (H ₂ O) _x Metalâ€organic Frameworks for Lithium Metal Battery. Electroanalysis, 2022, 34, 1667-1672.	2.9	2
126	Tb ³⁺ /Sm ³⁺ co-doped double perovskite: synthesis, exfoliation and luminescence properties. Chemical Communications, 2022, 58, 6626-6629.	4.1	2

#	Article	IF	CITATIONS
127	The 2015 Edward C. Weston Summer Research Fellowship – Summary Report: FeOOH (Goethite) Nanorods with Carbon Nanotube Network as Energy Storage Materials. Electrochemical Society Interface, 2015, 24, 68-69.	0.4	Ο
128	Editorial: Deep Eutectic Solvents/Complex Salts-Based Electrolyte for Next Generation Rechargeable Batteries. Frontiers in Chemistry, 2020, 8, 613353.	3.6	0
129	Luminescent properties of Gd(CO3)OH spherical particles with the prospect for CL microscopic analysis and multi-color displays. Materials Chemistry Frontiers, 0, , .	5.9	0