Ronald C Desrosiers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/885835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gastrointestinal Tract as a Major Site of CD4+ T Cell Depletion and Viral Replication in SIV Infection. Science, 1998, 280, 427-431.	12.6	1,327
2	Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature, 1987, 328, 543-547.	27.8	659
3	A role for carbohydrates in immune evasion in AIDS. Nature Medicine, 1998, 4, 679-684.	30.7	552
4	Deregulation of cell growth by the K1 gene of Karposi's sarcoma-associated herpesvirus. Nature Medicine, 1998, 4, 435-440.	30.7	294
5	AAV-expressed eCD4-lg provides durable protection from multiple SHIV challenges. Nature, 2015, 519, 87-91.	27.8	265
6	HIV vaccine design: insights from live attenuated SIV vaccines. Nature Immunology, 2006, 7, 19-23.	14.5	235
7	Identification of Highly Attenuated Mutants of Simian Immunodeficiency Virus. Journal of Virology, 1998, 72, 1431-1437.	3.4	224
8	Protection by Live, Attenuated Simian Immunodeficiency Virus against Heterologous Challenge. Journal of Virology, 1999, 73, 8356-8363.	3.4	209
9	Highly Attenuated Vaccine Strains of Simian Immunodeficiency Virus Protect against Vaginal Challenge: Inverse Relationship of Degree of Protection with Level of Attenuation. Journal of Virology, 1999, 73, 4952-4961.	3.4	205
10	The Primary Sequence of Rhesus Monkey Rhadinovirus Isolate 26-95: Sequence Similarities to Kaposi's Sarcoma-Associated Herpesvirus and Rhesus Monkey Rhadinovirus Isolate 17577. Journal of Virology, 2000, 74, 3388-3398.	3.4	182
11	Comparison of simian immunodeficiency virus isolates. Nature, 1988, 331, 619-621.	27.8	178
12	ADCC Develops Over Time during Persistent Infection with Live-Attenuated SIV and Is Associated with Complete Protection against SIVmac251 Challenge. PLoS Pathogens, 2012, 8, e1002890.	4.7	156
13	Prevalence of antibodies to 3 retroviruses in a captive colony of macaque monkeys. International Journal of Cancer, 1988, 41, 601-608.	5.1	143
14	STP and Tip Are Essential for Herpesvirus Saimiri Oncogenicity. Journal of Virology, 1998, 72, 1308-1313.	3.4	122
15	Resistance of neonatal monkeys to live attenuated vaccine strains of simian immunodeficiency virus. Nature Medicine, 1997, 3, 32-36.	30.7	118
16	Assorted Mutations in the Envelope Gene of Simian Immunodeficiency Virus Lead to Loss of Neutralization Resistance against Antibodies Representing a Broad Spectrum of Specificities. Journal of Virology, 2003, 77, 9993-10003.	3.4	110
17	Vaccine Protection against Simian Immunodeficiency Virus by Recombinant Strains of Herpes Simplex Virus. Journal of Virology, 2000, 74, 7745-7754.	3.4	109
18	Prospects for an AIDS vaccine. Nature Medicine, 2004, 10, 221-223.	30.7	107

2

#	Article	IF	CITATIONS
19	Adeno-Associated Virus Delivery of Anti-HIV Monoclonal Antibodies Can Drive Long-Term Virologic Suppression. Immunity, 2019, 50, 567-575.e5.	14.3	96
20	Impact of Nef-Mediated Downregulation of Major Histocompatibility Complex Class I on Immune Response to Simian Immunodeficiency Virus. Journal of Virology, 2004, 78, 13335-13344.	3.4	86
21	A finger on the missing link. Nature, 1990, 345, 288-289.	27.8	83
22	Modulation of Env Content in Virions of Simian Immunodeficiency Virus: Correlation with Cell Surface Expression and Virion Infectivity. Journal of Virology, 2004, 78, 6775-6785.	3.4	80
23	A Replication-Competent, Neutralization-Sensitive Variant of Simian Immunodeficiency Virus Lacking 100 Amino Acids of Envelope. Journal of Virology, 2002, 76, 2075-2086.	3.4	79
24	Experimental Infection of Rhesus and Pig-Tailed Macaques with Macaque Rhadinoviruses. Journal of Virology, 1999, 73, 10320-10328.	3.4	78
25	AAV-Delivered Antibody Mediates Significant Protective Effects against SIVmac239 Challenge in the Absence of Neutralizing Activity. PLoS Pathogens, 2015, 11, e1005090.	4.7	77
26	Animal Models for Acquired Immunodeficiency Syndrome. Clinical Infectious Diseases, 1987, 9, 438-446.	5.8	72
27	Simian Immunodeficiency Virus Engrafted with Human Immunodeficiency Virus Type 1 (HIV-1)-Specific Epitopes: Replication, Neutralization, and Survey of HIV-1-Positive Plasma. Journal of Virology, 2006, 80, 3030-3041.	3.4	72
28	Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding. Scientific Reports, 2016, 6, 32956.	3.3	71
29	Induction of a virus-specific effector–memory CD4+ T cell response by attenuated SIV infection. Journal of Experimental Medicine, 2006, 203, 2661-2672.	8.5	63
30	Importance of B-Cell Responses for Immunological Control of Variant Strains of Simian Immunodeficiency Virus. Journal of Virology, 2003, 77, 375-381.	3.4	61
31	Host Anti-antibody Responses Following Adeno-associated Virus–mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys. Molecular Therapy, 2016, 24, 76-86.	8.2	60
32	Comparative Biology of Natural and Experimental SIVmac Infection in Macaque Monkeys: A Review. Journal of Medical Primatology, 1990, 19, 109-118.	0.6	56
33	Immunization of Macaques with Single-Cycle Simian Immunodeficiency Virus (SIV) Stimulates Diverse Virus-Specific Immune Responses and Reduces Viral Loads after Challenge with SIV mac 239. Journal of Virology, 2005, 79, 7707-7720.	3.4	54
34	Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus. Virology, 2007, 357, 199-214.	2.4	54
35	Importance of codon usage for the temporal regulation of viral gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14030-14035.	7.1	51
36	Rhesus Monkey Rhadinovirus Uses Eph Family Receptors for Entry into B Cells and Endothelial Cells but Not Fibroblasts. PLoS Pathogens, 2013, 9, e1003360.	4.7	50

#	Article	IF	CITATIONS
37	Virion Envelope Content, Infectivity, and Neutralization Sensitivity of Simian Immunodeficiency Virus. Journal of Virology, 2005, 79, 12455-12463.	3.4	49
38	Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16068.	4.1	48
39	Simian homologues of human herpesvirus 8. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 535-543.	4.0	42
40	Anti-drug Antibody Responses Impair Prophylaxis Mediated by AAV-Delivered HIV-1 Broadly Neutralizing Antibodies. Molecular Therapy, 2019, 27, 650-660.	8.2	42
41	Immune evasion strategies of the primate lentiviruses. Immunological Reviews, 2001, 183, 141-158.	6.0	40
42	Binding of the Kaposi's Sarcoma-Associated Herpesvirus to the Ephrin Binding Surface of the EphA2 Receptor and Its Inhibition by a Small Molecule. Journal of Virology, 2014, 88, 8724-8734.	3.4	32
43	Identification of Two N-Linked Glycosylation Sites within the Core of the Simian Immunodeficiency Virus Glycoprotein Whose Removal Enhances Sensitivity to Soluble CD4. Journal of Virology, 2005, 79, 12575-12583.	3.4	30
44	A Genetic System for Rhesus Monkey Rhadinovirus: Use of Recombinant Virus To Quantitate Antibody-Mediated Neutralization. Journal of Virology, 2006, 80, 1549-1562.	3.4	30
45	EphA7 Functions as Receptor on BJAB Cells for Cell-to-Cell Transmission of the Kaposi's Sarcoma-Associated Herpesvirus and for Cell-Free Infection by the Related Rhesus Monkey Rhadinovirus. Journal of Virology, 2019, 93, .	3.4	29
46	Long-Term Delivery of an Anti-SIV Monoclonal Antibody With AAV. Frontiers in Immunology, 2020, 11, 449.	4.8	29
47	Vaccine Protection against Simian Immunodeficiency Virus in Monkeys Using Recombinant Gamma-2 Herpesvirus. Journal of Virology, 2011, 85, 12708-12720.	3.4	27
48	Identification and characterization of a long non-coding RNA up-regulated during HIV-1 infection. Virology, 2017, 511, 30-39.	2.4	27
49	A conserved Eph family receptor-binding motif on the gH/gL complex of Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus. PLoS Pathogens, 2018, 14, e1006912.	4.7	27
50	Circumventing cellular immunity by miR142-mediated regulation sufficiently supports rAAV-delivered OVA expression without activating humoral immunity. JCI Insight, 2019, 4, .	5.0	26
51	Gp120 on HIV-1 Virions Lacks O-Linked Carbohydrate. PLoS ONE, 2015, 10, e0124784.	2.5	25
52	Discovery of O-Linked Carbohydrate on HIV-1 Envelope and Its Role in Shielding against One Category of Broadly Neutralizing Antibodies. Cell Reports, 2020, 30, 1862-1869.e4.	6.4	25
53	Viral Transformation Of Human T Lymphocytes. Advances in Cancer Research, 1994, 63, 211-244.	5.0	23
54	Potent Antibody-Mediated Neutralization and Evolution of Antigenic Escape Variants of Simian Immunodeficiency Virus Strain SIVmac239 In Vivo. Journal of Virology, 2008, 82, 9739-9752.	3.4	23

#	Article	IF	CITATIONS
55	Simian Immunodeficiency Virus from the Sooty Mangabey and Rhesus Macaque Is Modified with O-Linked Carbohydrate. Journal of Virology, 2011, 85, 582-595.	3.4	23
56	SIV Vpx Is Essential for Macrophage Infection but Not for Development of AIDS. PLoS ONE, 2014, 9, e84463.	2.5	23
57	Glycosylation of gp41 of Simian Immunodeficiency Virus Shields Epitopes That Can Be Targets for Neutralizing Antibodies. Journal of Virology, 2008, 82, 12472-12486.	3.4	22
58	Use of Infectious Molecular Clones of Simian Immunodeficiency Virus for Pathogenesis Studies. Journal of Medical Primatology, 1989, 18, 305-309.	0.6	21
59	HEK293T cell lines defective for O-linked glycosylation. PLoS ONE, 2017, 12, e0179949.	2.5	21
60	Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection. PLoS Pathogens, 2016, 12, e1006104.	4.7	21
61	Influence of Mismatch of Env Sequences on Vaccine Protection by Live Attenuated Simian Immunodeficiency Virus. Journal of Virology, 2013, 87, 7246-7254.	3.4	20
62	ThetaxGene Sequences Form Two Divergent Monophyletic Lineages Corresponding to Types I and II of Simian and Human T-Cell Leukemia/Lymphotropic Viruses. Virology, 1997, 231, 96-104.	2.4	19
63	Glycoprotein gene sequence variation in rhesus monkey rhadinovirus. Virology, 2010, 400, 175-186.	2.4	19
64	Potent Plasmablast-Derived Antibodies Elicited by the National Institutes of Health Dengue Vaccine. Journal of Virology, 2017, 91, .	3.4	19
65	Protection against HIV Acquisition in the RV144 Trial. Journal of Virology, 2017, 91, .	3.4	19
66	Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathogens, 2017, 13, e1006529.	4.7	19
67	Liver-Directed but Not Muscle-Directed AAV-Antibody Gene Transfer Limits Humoral Immune Responses in Rhesus Monkeys. Molecular Therapy - Methods and Clinical Development, 2020, 16, 94-102.	4.1	18
68	Recombinant AAV Vectors for Enhanced Expression of Authentic IgG. PLoS ONE, 2016, 11, e0158009.	2.5	16
69	Identification and characterization of a macrophage-tropic SIV envelope glycoprotein variant in blood from early infection in SIVmac251-infected macaques. Virology, 2014, 458-459, 53-68.	2.4	15
70	Rare Control of SIVmac239 Infection in a Vaccinated Rhesus Macaque. AIDS Research and Human Retroviruses, 2017, 33, 843-858.	1.1	15
71	Vaccine protection against SIVmac239 acquisition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1739-1744.	7.1	15
72	Molecular Changes Associated With Replication of Simian Immunodeficiency Virus in Human Cells. Journal of Medical Primatology, 1990, 19, 431-437.	0.6	15

#	Article	IF	CITATIONS
73	A Highly Unusual V1 Region of Env in an Elite Controller of HIV Infection. Journal of Virology, 2019, 93,	3.4	14
74	Infection and Persistence of Rhesus Monkey Rhadinovirus in Immortalized B-Cell Lines. Journal of Virology, 2006, 80, 3644-3649.	3.4	13
75	Genetic Diversity of Simian Immunodeficiency Virus. Journal of Medical Primatology, 1989, 18, 261-269.	0.6	13
76	High concordance of ELISA and neutralization assays allows for the detection of antibodies to individual AAV serotypes. Molecular Therapy - Methods and Clinical Development, 2022, 24, 199-206.	4.1	13
77	Use of Simian Immunodeficiency Virus for Vaccine Research. Journal of Medical Primatology, 1990, 19, 395-399.	0.6	12
78	The immunopathogenesis of retroviral diseases: No immunophenotypic alterations in T, B, and NK cell subsets in SIV _{mac239} â€challenged rhesus macaques protected by SIVΔ <i>nef</i> vaccination. Journal of Medical Primatology, 1996, 25, 186-191.	0.6	11
79	Rhesus Monkey Rhadinovirus ORF57 Induces gH and gL Glycoprotein Expression through Posttranscriptional Accumulation of Target mRNAs. Journal of Virology, 2011, 85, 7810-7817.	3.4	11
80	<i>Mamu-B*17</i> ⁺ Rhesus Macaques Vaccinated with <i>env</i> , <i>vif</i> , and <i>nef</i> Manifest Early Control of SIVmac239 Replication. Journal of Virology, 2018, 92, .	3.4	11
81	Fundamental Difference in the Content of High-Mannose Carbohydrate in the HIV-1 and HIV-2 Lineages. Journal of Virology, 2010, 84, 8998-9009.	3.4	10
82	Dengue Virus Evades AAV-Mediated Neutralizing Antibody Prophylaxis in Rhesus Monkeys. Molecular Therapy, 2017, 25, 2323-2331.	8.2	9
83	A recombinant herpesviral vector containing a near-full-length SIVmac239 genome produces SIV particles and elicits immune responses to all nine SIV gene products. PLoS Pathogens, 2018, 14, e1007143.	4.7	9
84	PRA1 co-localizes with envelope but does not influence primate lentivirus production, infectivity or envelope incorporation. Journal of General Virology, 2005, 86, 1785-1790.	2.9	8
85	Plxdc family members are novel receptors for the rhesus monkey rhadinovirus (RRV). PLoS Pathogens, 2021, 17, e1008979.	4.7	8
86	Cellular Immune Responses against Simian T-Lymphotropic Virus Type 1 Target Tax in Infected Baboons. Journal of Virology, 2016, 90, 5280-5291.	3.4	8
87	A case of pulmonary cestodiasis in a simian immunodeficiency virusâ€infected pigtailed macaque (<i>Macaca nemestrina</i>) in which virusâ€infected leukocytes are present within the lesion. Journal of Medical Primatology, 1996, 25, 251-256.	0.6	7
88	Polymorphisms in Rhesus Macaque Tetherin Are Associated with Differences in Acute Viremia in Simian Immunodeficiency Virus Δ nef -Infected Animals. Journal of Virology, 2018, 92, .	3.4	7
89	Vaccine protection against rectal acquisition of SIVmac239 in rhesus macaques. PLoS Pathogens, 2019, 15, e1008015.	4.7	7
90	Rectal Acquisition of Simian Immunodeficiency Virus (SIV) SIVmac239 Infection despite Vaccine-Induced Immune Responses against the Entire SIV Proteome. Journal of Virology, 2020, 94, .	3.4	7

#	Article	IF	CITATIONS
91	Glycoengineering of AAV-delivered monoclonal antibodies yields increased ADCC activity. Molecular Therapy - Methods and Clinical Development, 2021, 20, 204-217.	4.1	7
92	Sequence Variability of Simian Immunodeficiency Virus in a Persistently Infected Rhesus Monkey. Journal of Medical Primatology, 1990, 19, 317-326.	0.6	7
93	Origin of the human AIDS virus. Nature, 1986, 319, 728-728.	27.8	6
94	Neutralizing Capacity of Monoclonal Antibodies That Recognize Peptide Sequences Underlying the Carbohydrates on gp41 of Simian Immunodeficiency Virus. Journal of Virology, 2012, 86, 12484-12493.	3.4	6
95	Systematic Analysis of Intracellular Trafficking Motifs Located within the Cytoplasmic Domain of Simian Immunodeficiency Virus Glycoprotein gp41. PLoS ONE, 2014, 9, e114753.	2.5	6
96	Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys. Journal of Virology, 2017, 91, .	3.4	5
97	Human Immunodeficiency Virus and Simian Immunodeficiency Virus Maintain High Levels of Infectivity in the Complete Absence of Mucin-Type O-Glycosylation. Journal of Virology, 2017, 91, .	3.4	5
98	The Frequency of Vaccine-Induced T-Cell Responses Does Not Predict the Rate of Acquisition after Repeated Intrarectal SIVmac239 Challenges in Mamu-B*08 + Rhesus Macaques. Journal of Virology, 2019, 93, .	3.4	5
99	Rhesus Monkey Rhadinovirus Isolated from Hemangioma Tissue. Microbiology Resource Announcements, 2020, 9, .	0.6	5
100	Study of spontaneous infectious diseases of primates: Contributions of the regional primate research centers program to conservation and new scientific opportunities. American Journal of Primatology, 1994, 34, 3-10.	1.7	3
101	Simian T Lymphotropic Virus 1 Infection of Papio anubis: <i>tax</i> Sequence Heterogeneity and T Cell Recognition. Journal of Virology, 2017, 91, .	3.4	3
102	A Recombinant Rhesus Monkey Rhadinovirus Deleted of Glycoprotein L Establishes Persistent Infection of Rhesus Macaques and Elicits Conventional T Cell Responses. Journal of Virology, 2020, 94, .	3.4	3
103	Recombinant Herpesvirus Vectors: Durable Immune Responses and Durable Protection against Simian Immunodeficiency Virus SIVmac239 Acquisition. Journal of Virology, 2021, 95, e0033021.	3.4	2
104	Profile of Ronald Derosiers, Ph.D BioTechniques, 2006, 41, 21.	1.8	0
105	Reply to "On the Use of 2,5-Dimethyl-Pyrrol-1-yl-Benzoic Acid Derivatives as EPH-Ephrin Antagonists― Journal of Virology, 2014, 88, 12174-12174.	3.4	0
106	Biographical Feature: Bernhard Fleckenstein. Journal of Virology, 2021, 95, e0089621.	3.4	0
107	Approaches to AIDS Research. Science, 1997, 275, 11-14.	12.6	0
108	SOSIP Trimer-Specific Antibodies Isolated from a Simian-Human Immunodeficiency Virus-Infected Monkey with versus without a Pre-blocking Step with gp41. Journal of Virology, 2022, 96, JVI0158221.	3.4	0