
Nicholas G Reich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8858239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 2020, 172, 577-582.	3.9	4,808
2	Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infectious Diseases, The, 2009, 9, 291-300.	9.1	684
3	N95 Respirators vs Medical Masks for Preventing Influenza Among Health Care Personnel. JAMA - Journal of the American Medical Association, 2019, 322, 824.	7.4	388
4	Estimation of Excess Deaths Associated With the COVID-19 Pandemic in the United States, March to May 2020. JAMA Internal Medicine, 2020, 180, 1336.	5.1	374
5	Outbreak of 2009 Pandemic Influenza A (H1N1) at a New York City School. New England Journal of Medicine, 2009, 361, 2628-2636.	27.0	284
6	Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. Journal of the Royal Society Interface, 2013, 10, 20130414.	3.4	254
7	A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3146-3154.	7.1	199
8	Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial. Lancet, The, 2013, 381, 1099-1106.	13.7	187
9	An Evaluation of Environmental Decontamination With Hydrogen Peroxide Vapor for Reducing the Risk of Patient Acquisition of Multidrug-Resistant Organisms. Clinical Infectious Diseases, 2013, 56, 27-35.	5.8	186
10	Risk Factors for Peripherally Inserted Central Venous Catheter Complications in Children. JAMA Pediatrics, 2013, 167, 429.	6.2	154
11	Central Line-Associated Bloodstream Infection in Hospitalized Children with Peripherally Inserted Central Venous Catheters: Extending Risk Analyses Outside the Intensive Care Unit. Clinical Infectious Diseases, 2011, 52, 1108-1115.	5.8	138
12	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	7.1	136
13	Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113561119.	7.1	136
14	Evaluating epidemic forecasts in an interval format. PLoS Computational Biology, 2021, 17, e1008618.	3.2	128
15	Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios — United States, April–September 2021. Morbidity and Mortality Weekly Report, 2021, 70, 719-724.	15.1	126
16	Catheter Dwell Time and CLABSIs in Neonates With PICCs: A Multicenter Cohort Study. Pediatrics, 2013, 132, e1609-e1615.	2.1	120
17	Incubation periods of viral gastroenteritis: a systematic review. BMC Infectious Diseases, 2013, 13, 446.	2.9	119
18	Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S PLoS Computational Biology, 2019, 15, e1007486.	3.2	119

#	Article	IF	CITATIONS
19	Estimating incubation period distributions with coarse data. Statistics in Medicine, 2009, 28, 2769-2784.	1.6	116
20	Preprints: An underutilized mechanism to accelerate outbreak science. PLoS Medicine, 2018, 15, e1002549.	8.4	100
21	Dried whole-plant <i>Artemisia annua</i> slows evolution of malaria drug resistance and overcomes resistance to artemisinin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 821-826.	7.1	98
22	Prediction of infectious disease epidemics via weighted density ensembles. PLoS Computational Biology, 2018, 14, e1005910.	3.2	97
23	Using "outbreak science―to strengthen the use of models during epidemics. Nature Communications, 2019, 10, 3102.	12.8	92
24	Dried Whole Plant Artemisia annua as an Antimalarial Therapy. PLoS ONE, 2012, 7, e52746.	2.5	90
25	Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016. Scientific Reports, 2019, 9, 683.	3.3	90
26	Times to key events in Zika virus infection and implications for blood donation: a systematic review. Bulletin of the World Health Organization, 2016, 94, 841-849.	3.3	84
27	Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico. Scientific Reports, 2016, 6, 33707.	3.3	82
28	Empirical Power and Sample Size Calculations for Cluster-Randomized and Cluster-Randomized Crossover Studies. PLoS ONE, 2012, 7, e35564.	2.5	51
29	Prospective forecasts of annual dengue hemorrhagic fever incidence in Thailand, 2010–2014. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2175-E2182.	7.1	51
30	Technology to advance infectious disease forecasting for outbreak management. Nature Communications, 2019, 10, 3932.	12.8	44
31	Infectious disease prediction with kernel conditional density estimation. Statistics in Medicine, 2017, 36, 4908-4929.	1.6	43
32	Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines. PLoS Medicine, 2021, 18, e1003793.	8.4	42
33	Challenges in Real-Time Prediction of Infectious Disease: A Case Study of Dengue in Thailand. PLoS Neglected Tropical Diseases, 2016, 10, e0004761.	3.0	39
34	Protecting Healthcare Personnel in Outpatient Settings: The Influence of Mandatory Versus Nonmandatory Influenza Vaccination Policies on Workplace Absenteeism During Multiple Respiratory Virus Seasons. Infection Control and Hospital Epidemiology, 2018, 39, 452-461.	1.8	37
35	Career intentions of medical students in the setting of Nepal's rapidly expanding private medical education system. Health Policy and Planning, 2012, 27, 417-428.	2.7	35
36	Estimating Absolute and Relative Case Fatality Ratios from Infectious Disease Surveillance Data. Biometrics, 2012, 68, 598-606.	1.4	33

#	Article	IF	CITATIONS
37	Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error. American Statistician, 2016, 70, 285-292.	1.6	31
38	Aggregating predictions from experts: A review of statistical methods, experiments, and applications. Wiley Interdisciplinary Reviews: Computational Statistics, 2021, 13, e1514.	3.9	31
39	Is hand hygiene before putting on nonsterile gloves in the intensive care unit a waste of health care worker time?—A randomized controlled trial. American Journal of Infection Control, 2013, 41, 994-996.	2.3	29
40	The Respiratory Protection Effectiveness Clinical Trial (ResPECT): a cluster-randomized comparison of respirator and medical mask effectiveness against respiratory infections in healthcare personnel. BMC Infectious Diseases, 2016, 16, 243.	2.9	27
41	The Effect of Change in Body Mass Index on Volumetric Measures of Mammographic Density. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1724-1730.	2.5	26
42	Identifying the Probable Timing and Setting of Respiratory Virus Infections. Infection Control and Hospital Epidemiology, 2010, 31, 809-815.	1.8	25
43	Regional and temporal variation in American Red Cross blood donations, 1995 to 2005. Transfusion, 2008, 48, 1576-1583.	1.6	24
44	Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States. International Journal of Forecasting, 2023, 39, 1366-1383.	6.5	23
45	Impact of Colonization Pressure and Strain Type on Methicillin-Resistant Staphylococcus aureus Transmission in Children. Clinical Infectious Diseases, 2013, 57, 1458-1460.	5.8	22
46	The Effect of Cluster Size Variability on Statistical Power in Cluster-Randomized Trials. PLoS ONE, 2015, 10, e0119074.	2.5	19
47	Quantifying the Risk and Cost of Active Monitoring for Infectious Diseases. Scientific Reports, 2018, 8, 1093.	3.3	17
48	Risk Factors for Healthcare Personnel Infection With Endemic Coronaviruses (HKU1, OC43, NL63, 229E): Results from the Respiratory Protection Effectiveness Clinical Trial (ResPECT). Clinical Infectious Diseases, 2021, 73, e4428-e4432.	5.8	17
49	Visualizing Clinical Evidence: Citation Networks for the Incubation Periods of Respiratory Viral Infections. PLoS ONE, 2011, 6, e19496.	2.5	14
50	N95 Respirators or Surgical Masks to Protect Healthcare Workers against Respiratory Infections: Are We There Yet?. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 904-905.	5.6	12
51	Triggering Interventions for Influenza: The ALERT Algorithm. Clinical Infectious Diseases, 2015, 60, 499-504.	5.8	12
52	Reply to Bracher: Scoring probabilistic forecasts to maximize public health interpretability. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20811-20812.	7.1	10
53	Identification and evaluation of epidemic prediction and forecasting reporting guidelines: A systematic review and a call for action. Epidemics, 2020, 33, 100400.	3.0	10
54	Seasonality of suicide behavior in Northwest Alaska: 1990–2009. Public Health, 2016, 137, 35-43.	2.9	9

#	Article	IF	CITATIONS
55	The Zoltar forecast archive, a tool to standardize and store interdisciplinary prediction research. Scientific Data, 2021, 8, 59.	5.3	9
56	Adaptively stacking ensembles for influenza forecasting. Statistics in Medicine, 2021, 40, 6931.	1.6	9
57	Detection of Heterogeneity of Borrelia burgdorferi in Ixodes Ticks by Culture-Dependent and Culture-Independent Methods. Journal of Clinical Microbiology, 2013, 51, 615-617.	3.9	8
58	flusight: interactive visualizations for infectious disease forecasts. Journal of Open Source Software, 2017, 2, 231.	4.6	8
59	Serological surveys to estimate cumulative incidence of SARS-CoV-2 infection in adults (Sero-MAss) Tj ETQq1	1 0.784314 1.9	∙rg₿T /Overlo
60	A Stochastic Simulator of a Blood Product Donation Environment with Demand Spikes and Supply Shocks. PLoS ONE, 2011, 6, e21752.	2.5	7
61	Improving efficiency in cluster-randomized study design and implementation: taking advantage of a crossover. Open Access Journal of Clinical Trials, 0, , 11.	1.5	6
62	Risk Factors for Persistent Methicillin-Resistant Staphylococcus aureus Colonization in Children with Multiple Intensive Care Unit Admissions. Infection Control and Hospital Epidemiology, 2013, 34, 748-750.	1.8	5
63	Menopausal vasomotor symptoms and incident breast cancer risk in the Study of Women's Health Across the Nation. Cancer Causes and Control, 2016, 27, 1333-1340.	1.8	5
64	Improving probabilistic infectious disease forecasting through coherence. PLoS Computational Biology, 2021, 17, e1007623.	3.2	5
65	Enriching Students' Conceptual Understanding of Confidence Intervals: An Interactive Trivia-Based Classroom Activity. American Statistician, 2019, 73, 50-55.	1.6	4
66	Coordinating the realâ€ŧime use of global influenza activity data for better public health planning. Influenza and Other Respiratory Viruses, 2020, 14, 105-110.	3.4	4
67	Infectious Disease Forecasting for Public Health. , 2020, , 45-68.		4
68	Outpatient healthcare personnel knowledge and attitudes towards infection prevention measures for protection from respiratory infections. American Journal of Infection Control, 2021, 49, 1369-1375.	2.3	3
69	Collaborative modeling key to improving outbreak response. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200703119.	7.1	3
70	Identification of the Asymptomatic Ratio. Epidemiology, 2011, 22, 333-335.	2.7	2
71	Acute Respiratory Infections (ARIs) Among Outpatient Healthcare Personnel (HCP). Open Forum Infectious Diseases, 2016, 3, .	0.9	2
72	Impact of mandatory vaccination of healthcare personnel on rates of influenza and other viral respiratory pathogens. Infection Control and Hospital Epidemiology, 2022, 43, 1216-1220.	1.8	2

#	Article	IF	CITATIONS
73	Commentary: Back to the future with Sir Bradford Hill: statistical analysis with hospital-acquired infections. International Journal of Epidemiology, 2013, 42, 1509-1510.	1.9	1
74	Evaluating the ALERT algorithm for local outbreak onset detection in seasonal infectious disease surveillance data. Statistics in Medicine, 2020, 39, 1145-1155.	1.6	1
75	Take-home kits to detect respiratory viruses among healthcare personnel: Lessons learned from a cluster randomized clinical trial. American Journal of Infection Control, 2021, 49, 893-899.	2.3	1
76	1716. Results of the Respiratory Protection Effectiveness Clinical Trial (ResPECT). Open Forum Infectious Diseases, 2018, 5, S51-S51.	0.9	0
77	Improving probabilistic infectious disease forecasting through coherence. , 2021, 17, e1007623.		0
78	Improving probabilistic infectious disease forecasting through coherence. , 2021, 17, e1007623.		0
79	Improving probabilistic infectious disease forecasting through coherence. , 2021, 17, e1007623.		0
80	Improving probabilistic infectious disease forecasting through coherence. , 2021, 17, e1007623.		0
81	Improving probabilistic infectious disease forecasting through coherence. , 2021, 17, e1007623.		0
82	Improving probabilistic infectious disease forecasting through coherence. , 2021, 17, e1007623.		0
83	Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S , 2019, 15, e1007486.		0
84	Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S , 2019, 15, e1007486.		0
85	Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S , 2019, 15, e1007486.		0
86	Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S , 2019, 15, e1007486.		0