Xingchen Ye

List of Publications by Citations

Source: https://exaly.com/author-pdf/885819/xingchen-ye-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

90 9,400 47 94 g-index

94 10,391 13.1 6.02 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
90	Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. <i>Nano Letters</i> , 2013 , 13, 765-71	11.5	708
89	Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. <i>ACS Nano</i> , 2012 , 6, 2804-17	16.7	641
88	A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. <i>Journal of the American Chemical Society</i> , 2011 , 133, 998-1006	16.4	631
87	Quasicrystalline order in self-assembled binary nanoparticle superlattices. <i>Nature</i> , 2009 , 461, 964-7	50.4	485
86	Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 22430-5	11.5	385
85	Platinum nanocrystals selectively shaped using facet-specific peptide sequences. <i>Nature Chemistry</i> , 2011 , 3, 393-9	17.6	361
84	Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8978-85	3.4	307
83	Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted CsPbBr Nanocrystals. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5309-5312	16.4	301
82	Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15753-61	16.4	278
81	Competition of shape and interaction patchiness for self-assembling nanoplates. <i>Nature Chemistry</i> , 2013 , 5, 466-73	17.6	253
80	Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. <i>ACS Nano</i> , 2012 , 6, 5642-7	16.7	242
79	Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. <i>ACS Nano</i> , 2012 , 6, 8758-66	16.7	240
78	Exploiting the colloidal nanocrystal library to construct electronic devices. <i>Science</i> , 2016 , 352, 205-8	33.3	189
77	Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6156-9	16.4	181
76	Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. <i>ACS Nano</i> , 2013 , 7, 7186-92	16.7	174
75	Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 42-5	16.4	166
74	Single-particle mapping of nonequilibrium nanocrystal transformations. <i>Science</i> , 2016 , 354, 874-877	33.3	165

(2013-2015)

73	Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. <i>Nature Communications</i> , 2015 , 6, 10052	17.4	162
72	Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni3S2 nanostructures grown directly on nickel foils. <i>Chemistry - A European Journal</i> , 2006 , 12, 2337-42	4.8	162
71	Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. <i>Nano Letters</i> , 2013 , 13, 2163-71	11.5	161
70	Shape-controlled synthesis of Pt nanocrystals: the role of metal carbonyls. <i>ACS Nano</i> , 2013 , 7, 645-53	16.7	149
69	Two-dimensional binary and ternary nanocrystal superlattices: the case of monolayers and bilayers. <i>Nano Letters</i> , 2011 , 11, 1804-9	11.5	144
68	Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. <i>Nano Letters</i> , 2014 , 14, 2867-72	11.5	137
67	Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. <i>Nano Letters</i> , 2010 , 10, 5103-8	11.5	125
66	Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1499-505	16.4	107
65	High-Efficiency PbS Quantum-Dot Solar Cells with Greatly Simplified Fabrication Processing via "Solvent-Curing". <i>Advanced Materials</i> , 2018 , 30, e1707572	24	106
64	Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly. <i>ACS Nano</i> , 2014 , 8, 9482-91	16.7	105
63	In vivo multiple color lymphatic imaging using upconverting nanocrystals. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6481		104
62	Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy. <i>Nano Letters</i> , 2013 , 13, 1291-7	11.5	103
61	Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using in Situ Liquid Phase Transmission Electron Microscopy. <i>ACS Central Science</i> , 2015 , 1, 33-9	16.8	102
60	Quasicrystalline nanocrystal superlattice with partial matching rules. <i>Nature Materials</i> , 2017 , 16, 214-21	9 27	96
59	Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11680	-6 ^{6.4}	92
58	1D Tellurium Nanostructures: Photothermally Assisted Morphology-Controlled Synthesis and Applications in Preparing Functional Nanoscale Materials. <i>Advanced Functional Materials</i> , 2007 , 17, 486-	4 92 6	90
57	Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy. <i>ACS Nano</i> , 2016 , 10, 2144-51	16.7	89
56	Shape alloys of nanorods and nanospheres from self-assembly. <i>Nano Letters</i> , 2013 , 13, 4980-8	11.5	87

55	Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20826-31	11.5	85
54	Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures. <i>Advanced Materials</i> , 2015 , 27, 5830-7	24	82
53	Polymorphism in self-assembled AB6 binary nanocrystal superlattices. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2613-20	16.4	78
52	Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals. <i>Nano Letters</i> , 2013 , 13, 350-7	11.5	75
51	Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism. <i>Nanotechnology</i> , 2006 , 17, 385-390	3.4	74
50	Bistable magnetoresistance switching in exchange-coupled CoFeDHFeDIbinary nanocrystal superlattices by self-assembly and thermal annealing. <i>ACS Nano</i> , 2013 , 7, 1478-86	16.7	73
49	Multiscale periodic assembly of striped nanocrystal superlattice films on a liquid surface. <i>Nano Letters</i> , 2011 , 11, 841-6	11.5	73
48	Photothermally assisted solution-phase synthesis of microscale tubes, rods, shuttles, and an urchin-like assembly of single-crystalline trigonal selenium. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2571-4	16.4	64
47	Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5106-15	16.4	60
46	Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces. <i>Nano Letters</i> , 2015 , 15, 5254-60	11.5	56
45	Probing Single-Particle Electrocatalytic Activity at Facet-Controlled Gold Nanocrystals. <i>Nano Letters</i> , 2020 , 20, 1233-1239	11.5	56
44	Gold nanorod translocations and charge measurement through solid-state nanopores. <i>Nano Letters</i> , 2014 , 14, 5358-64	11.5	48
43	Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 2836-2841	11.5	47
42	Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices. <i>ACS Nano</i> , 2010 , 4, 2374-81	16.7	46
41	Enhanced thermal stability and magnetic properties in NaCl-type FePt-MnO binary nanocrystal superlattices. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13296-9	16.4	45
40	Tailoring Morphology of Cu-Ag Nanocrescents and Core-Shell Nanocrystals Guided by a Thermodynamic Model. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8569-8577	16.4	41
39	Near-Infrared Absorption of Monodisperse Silver Telluride (Ag2Te) Nanocrystals and Photoconductive Response of Their Self-Assembled Superlattices. <i>Chemistry of Materials</i> , 2011 , 23, 465	57 ² 4659	9 ⁴¹
38	Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. <i>Nature Communications</i> , 2019 , 10, 1394	17.4	39

(2020-2010)

37	Size- and Shape-Selective Synthesis of Metal Nanocrystals and Nanowires Using CO as a Reducing Agent. <i>Angewandte Chemie</i> , 2010 , 122, 6292-6295	3.6	39
36	Three-dimensional self-assembly of chalcopyrite copper indium diselenide nanocrystals into oriented films. <i>ACS Nano</i> , 2013 , 7, 4307-15	16.7	37
35	Solution-phase synthesis and electrochemical hydrogen storage of ultra-long single-crystal selenium submicrotubes. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22830-5	3.4	37
34	Probing the Structure, Composition, and Spatial Distribution of Ligands on Gold Nanorods. <i>Nano Letters</i> , 2015 , 15, 5730-8	11.5	33
33	Air-stable, nanostructured electronic and plasmonic materials from solution-processable, silver nanocrystal building blocks. <i>ACS Nano</i> , 2014 , 8, 2746-54	16.7	33
32	Mineralizer-Assisted Shape-Control of Rare Earth Oxide Nanoplates. <i>Chemistry of Materials</i> , 2014 , 26, 6328-6332	9.6	27
31	A facile solution-phase deposition approach to porous selenium materials. <i>Journal of Materials Chemistry</i> , 2007 , 17, 2706		27
30	Gold nanorod length controls dispersion, local ordering, and optical absorption in polymer nanocomposite films. <i>Soft Matter</i> , 2014 , 10, 3404-13	3.6	25
29	Rapid Large-Scale Assembly and Pattern Transfer of One-Dimensional Gold Nanorod Superstructures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 25513-25521	9.5	24
28	Cooperative interactions among CTA+, Brand Ag+ during seeded growth of gold nanorods. <i>Nano Research</i> , 2017 , 10, 2146-2155	10	19
27	Heterometallic Seed-Mediated Growth of Monodisperse Colloidal Copper Nanorods with Widely Tunable Plasmonic Resonances. <i>Nano Letters</i> , 2020 , 20, 7263-7271	11.5	19
26	Imaging the kinetics of anisotropic dissolution of bimetallic core-shell nanocubes using graphene liquid cells. <i>Nature Communications</i> , 2020 , 11, 3041	17.4	18
25	Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. <i>ACS Nano</i> , 2020 , 14, 10239-10250	16.7	18
24	Broadband Tunable Mid-infrared Plasmon Resonances in Cadmium Oxide Nanocrystals Induced by Size-Dependent Nonstoichiometry. <i>Nano Letters</i> , 2020 , 20, 2821-2828	11.5	16
23	Large-size niobium disulfide nanoflakes down to bilayers grown by sulfurization. <i>Nano Research</i> , 2018 , 11, 5978-5988	10	15
22	Three novel missense mutations in the filamin B gene are associated with isolated congenital talipes equinovarus. <i>Human Genetics</i> , 2016 , 135, 1181-9	6.3	15
21	Multiarmed tubular selenium with potentially unique electrical properties: solution-phase synthesis and first-principles calculation. <i>Small</i> , 2007 , 3, 101-5	11	13
20	Packing State Management to Realize Dense and Semiconducting Lead Sulfide Nanocrystals Film via a Single-Step Deposition. <i>Cell Reports Physical Science</i> , 2020 , 1, 100183	6.1	8

19	Enhanced mid-wavelength infrared refractive index of organically modified chalcogenide (ORMOCHALC) polymer nanocomposites with thermomechanical stability. <i>Optical Materials</i> , 2020 , 108, 110197	3.3	7
18	Kinetically Controlled Self-Assembly of Binary Polymer-Grafted Nanocrystals into Ordered Superstructures via Solvent Vapor Annealing. <i>Nano Letters</i> , 2021 , 21, 5053-5059	11.5	7
17	The effect of loading methods and parameters on defect detection in digital shearography. <i>Results in Physics</i> , 2017 , 7, 3744-3755	3.7	6
16	Colloidal Synthesis of Nanohelices via Bilayer Lattice Misfit. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12777-12783	16.4	6
15	Photothermally Assisted Solution-Phase Synthesis of Microscale Tubes, Rods, Shuttles, and an Urchin-Like Assembly of Single-Crystalline Trigonal Selenium. <i>Angewandte Chemie</i> , 2006 , 118, 2633-263	<i>6</i> ³.6	6
14	Nanorod position and orientation in vertical cylinder block copolymer films. <i>Soft Matter</i> , 2020 , 16, 3005	-30614	5
13	Optically and Structurally Stabilized Plasmo-Bio Interlinking Networks. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001370	4.6	5
12	Shape control in the synthesis of colloidal semiconductor nanocrystals 2018 , 37-54		4
11	Manipulating atomic defects in plasmonic vanadium dioxide for superior solar and thermal management. <i>Materials Horizons</i> , 2021 , 8, 1700-1710	14.4	4
10	Microscopic mechanisms of deformation transfer in high dynamic range branched nanoparticle deformation sensors. <i>Nature Communications</i> , 2018 , 9, 1155	17.4	3
9	Controlling Infrared Plasmon Resonances in Inverse-Spinel Cadmium Stannate Nanocrystals via Site-Selective Cation-Exchange Reactions. <i>Chemistry of Materials</i> , 2021 , 33, 1954-1963	9.6	3
8	Amifostine inhibited the differentiation of RAW264.7 cells into osteoclasts by reducing the production of ROS under 2 Gy radiation. <i>Journal of Cellular Biochemistry</i> , 2020 , 121, 497-507	4.7	3
7	Characterization of Ligand Adsorption at Individual Gold Nanocubes. <i>Langmuir</i> , 2021 , 37, 7701-7711	4	2
6	Response To Comment On ID Tellurium Nanostructures: Photothermally Assisted Morphology-Controlled Synthesis and Applications in Preparing Functional Nanoscale Materials Advanced Functional Materials, 2009 , 19, 3193-3194	15.6	1
5	Electrospray deposition for single nanoparticle studies. <i>Analytical Methods</i> , 2021 , 13, 4105-4113	3.2	1
4	Macromolecular Ligand Engineering for Programmable Nanoprism Assembly. <i>Journal of the American Chemical Society</i> , 2021 , 143, 16163-16172	16.4	1
3	Ultrafast Dynamics of Colloidal Copper Nanorods: Intraband versus Interband Excitation. <i>Small Science</i> , 2022 , 2, 2100103		1
2	Novel computational design of high refractive index nanocomposites and effective refractive index tuning based on nanoparticle morphology effect. <i>Composites Part B: Engineering</i> , 2021 , 223, 109128	10	0

Hydrophobic Cargo Encapsulation into Virus Protein Cages by Self-Assembly in an Aprotic Organic Solvent. *Bioconjugate Chemistry*, **2021**, 32, 2366-2376

6.3