Weiya Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/885773/publications.pdf

Version: 2024-02-01

136950 118850 4,229 61 32 62 h-index citations g-index papers 64 64 64 6406 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Stretchable, Integrated Supercapacitors Based on Singleâ€Walled Carbon Nanotube Films with Continuous Reticulate Architecture. Advanced Materials, 2013, 25, 1058-1064.	21.0	496
2	Directly Synthesized Strong, Highly Conducting, Transparent Single-Walled Carbon Nanotube Films. Nano Letters, 2007, 7, 2307-2311.	9.1	334
3	A "skeleton/skin―strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy and Environmental Science, 2012, 5, 8726.	30.8	312
4	Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy and Environmental Science, 2011, 4, 1440.	30.8	310
5	High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nature Communications, 2017, 8, 14886.	12.8	257
6	High-Strength Composite Fibers: Realizing True Potential of Carbon Nanotubes in Polymer Matrix through Continuous Reticulate Architecture and Molecular Level Couplings. Nano Letters, 2009, 9, 2855-2861.	9.1	242
7	Highly Compressible and Allâ€Solidâ€State Supercapacitors Based on Nanostructured Composite Sponge. Advanced Materials, 2015, 27, 6002-6008.	21.0	217
8	A Universal Strategy to Prepare Functional Porous Graphene Hybrid Architectures. Advanced Materials, 2014, 26, 3681-3687.	21.0	164
9	Highly Transparent and Conductive Stretchable Conductors Based on Hierarchical Reticulate Singleâ€Walled Carbon Nanotube Architecture. Advanced Functional Materials, 2012, 22, 5238-5244.	14.9	148
10	Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and Fibers. Advanced Materials, 2009, 21, 603-608.	21.0	138
11	Synthesis, Structure, and Properties of Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2009, 21, 4565-4583.	21.0	123
12	Programmable Nanocarbonâ€Based Architectures for Flexible Supercapacitors. Advanced Energy Materials, 2015, 5, 1500677.	19.5	87
13	Ultrahighâ€Powerâ€Factor Carbon Nanotubes and an Ingenious Strategy for Thermoelectric Performance Evaluation. Small, 2016, 12, 3407-3414.	10.0	76
14	Temperature dependence of resonant Raman scattering in double-wall carbon nanotubes. Applied Physics Letters, 2003, 82, 3098-3100.	3.3	69
15	Hydro-actuation of hybrid carbon nanotube yarn muscles. Nanoscale, 2016, 8, 17881-17886.	5.6	60
16	Novel approach to enhance efficiency of hybrid silicon-based solar cells via synergistic effects of polymer and carbon nanotube composite film. Nano Energy, 2017, 33, 436-444.	16.0	54
17	An integrated configuration with robust interfacial contact for durable and flexible zinc ion batteries. Nano Energy, 2020, 74, 104905.	16.0	54
18	Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array. Nanoscale, 2015, 7, 12492-12497.	5.6	53

#	Article	IF	Citations
19	Highly Efficient Direct Electrodeposition of Coâ^'Cu Alloy Nanotubes in an Anodic Alumina Template. Journal of Physical Chemistry C, 2008, 112, 2256-2261.	3.1	52
20	Epidermal Supercapacitor with High Performance. Advanced Functional Materials, 2016, 26, 8178-8184.	14.9	52
21	Synthesis of large-scale periodic ZnO nanorod arrays and its blue-shift of UV luminescence. Journal of Materials Chemistry, 2009, 19, 962-969.	6.7	48
22	Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Research, 2014, 7, 1680-1690.	10.4	47
23	Temperature dependence of Raman spectra in single-walled carbon nanotube rings. Applied Physics Letters, 2008, 92, 121905.	3.3	44
24	Raman scattering and thermogravimetric analysis of iodine-doped multiwall carbon nanotubes. Applied Physics Letters, 2002, 80, 2553-2555.	3.3	43
25	Axial Compression of Hierarchically Structured Carbon Nanotube Fiber Embedded in Epoxy. Advanced Functional Materials, 2010, 20, 3797-3803.	14.9	43
26	Optical visualization and polarized light absorption of the single-wall carbon nanotube to verify intrinsic thermal applications. Light: Science and Applications, 2015, 4, e318-e318.	16.6	43
27	Highâ€Strength Laminated Copper Matrix Nanocomposites Developed from a Singleâ€Walled Carbon Nanotube Film with Continuous Reticulate Architecture. Advanced Functional Materials, 2012, 22, 5209-5215.	14.9	40
28	Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu ₂ O core–shell nanorods. Nanoscale, 2019, 11, 16445-16454.	5.6	40
29	In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor. Energy Storage Materials, 2020, 33, 298-308.	18.0	40
30	Recent Advances in Structure Separation of Singleâ€Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. Advanced Science, 2022, 9, e2200054.	11.2	39
31	Detecting and Tuning the Interactions between Surfactants and Carbon Nanotubes for Their Highâ€Efficiency Structure Separation. Advanced Materials Interfaces, 2018, 5, 1700727.	3.7	38
32	Allâ€Carbon Pressure Sensors with High Performance and Excellent Chemical Resistance. Small, 2019, 15, e1804779.	10.0	38
33	Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Science Advances, 2021, 7, .	10.3	38
34	Transparent and Freestanding Singleâ€Walled Carbon Nanotube Films Synthesized Directly and Continuously via a Blown Aerosol Technique. Advanced Materials, 2020, 32, e2004277.	21.0	34
35	High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films. Nanoscale, 2011, 3, 3731.	5.6	31
36	Random Networks of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 10751-10753.	2.6	30

#	Article	IF	Citations
37	Performance improvement of continuous carbon nanotube fibers by acid treatment. Chinese Physics B, 2017, 26, 028802.	1.4	29
38	Freestanding single-walled carbon nanotube bundle networks: Fabrication, properties and composites. Science Bulletin, 2012, 57, 205-224.	1.7	25
39	Structure Sorting of Largeâ€Diameter Carbon Nanotubes by NaOH Tuning the Interactions between Nanotubes and Gel. Advanced Functional Materials, 2017, 27, 1700278.	14.9	25
40	The intrinsic temperature effect of Raman spectra of double-walled carbon nanotubes. Chemical Physics Letters, 2004, 396, 372-376.	2.6	23
41	Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes. ACS Nano, 2017, 11, 1257-1263.	14.6	23
42	A structure model and growth mechanism for novel carbon nanotubes. Journal of Materials Science, 1999, 34, 2745-2749.	3.7	20
43	Mille-Crêpe-like Metal Phosphide Nanocrystals/Carbon Nanotube Film Composites as High-Capacitance Negative Electrodes in Asymmetric Supercapacitors. ACS Applied Energy Materials, 2020, 3, 4580-4588.	5.1	19
44	ZnO nanorods: morphology control, optical properties, and nanodevice applications. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2243-2265.	5.1	18
45	Mass Production of High-Purity Semiconducting Carbon Nanotubes by Hydrochloric Acid Assisted Gel Chromatography. ACS Applied Nano Materials, 2019, 2, 343-350.	5.0	17
46	Controllable preparation and properties of single-/double-walled carbon nanotubes. Science and Technology of Advanced Materials, 2005, 6, 725-735.	6.1	13
47	Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics. Nano Research, 2012, 5, 33-42.	10.4	12
48	Integrated, Highly Flexible, and Tailorable Thermoelectric Type Temperature Detectors Based on a Continuous Carbon Nanotube Fiber. Small, 2021, 17, e2102825.	10.0	12
49	Additional curvature-induced Raman splitting in carbon nanotube ring structures. Physical Review B, 2009, 80, .	3.2	10
50	Postgrowth alignment of SWNTs by an electric field. Carbon, 2006, 44, 170-173.	10.3	7
51	Surface-enhanced Raman scattering from the individual metallic single-walled carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 28, 360-364.	2.7	5
52	Large Third-Order Optical Nonlinearity in Directly Synthesized Single-Walled Carbon Nanotube Films. Journal of Nanoscience and Nanotechnology, 2010, 10, 7333-7335.	0.9	5
53	Quantitative analysis of the intertube coupling effect on the photoluminescence characteristics of distinct (n, m) carbon nanotubes dispersed in solution. Nano Research, 2020, 13, 1149-1155.	10.4	5

Quantitative analysis of the effect of reabsorption on the Raman spectroscopy of distinct (<i>n</i>,) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 2.7

#	Article	IF	CITATIONS
55	Electronic Type and Diameter Dependence of the Intersubband Plasmons of Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2022, 32, .	14.9	4
56	Growth morphology and structural characteristic of C70 single crystals. Science in China Series A: Mathematics, 1999, 42, 392-400.	0.5	3
57	Nanocomposites: High-Strength Laminated Copper Matrix Nanocomposites Developed from a Single-Walled Carbon Nanotube Film with Continuous Reticulate Architecture (Adv. Funct. Mater.) Tj ETQq1 1 0.	78 4& ∮4 rg	gBB/Overlock
58	Dependence of the solar cell performance on nanocarbon/Si heterojunctions. Chinese Physics B, 2018, 27, 078801.	1.4	3
59	Conductance and dielectric properties of pure C60 single crystal. Science Bulletin, 1997, 42, 40-43.	1.7	2
60	Large-scale preparation of dispersive carbon nanotubes by arc-discharge method. Science in China Series A: Mathematics, 1998, 41, 431-437.	0.5	2
61	Binderâ€Free Electrodes with High Energy Density and Excellent Flexibility Enabled by Hierarchical Configuration for Wearable Lithium Ion Batteries. Advanced Materials Technologies, 2021, 6, 2001262.	5.8	2