Fernando Scaglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8857682/publications.pdf

Version: 2024-02-01

117
papers c

7,651 citations

50276 46 h-index 83 g-index

122 all docs 122 docs citations 122 times ranked

10974 citing authors

#	Article	IF	CITATIONS
1	Clinical Spectrum, Morbidity, and Mortality in 113 Pediatric Patients With Mitochondrial Disease. Pediatrics, 2004, 114, 925-931.	2.1	431
2	MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Molecular Genetics and Metabolism, 2015, 116, 4-12.	1.1	431
3	Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genetics in Medicine, 2015, 17, 689-701.	2.4	414
4	GM1 gangliosidosis: Review of clinical, molecular, and therapeutic aspects. Molecular Genetics and Metabolism, 2008, 94, 391-396.	1.1	359
5	Use of Exome Sequencing for Infants in Intensive Care Units. JAMA Pediatrics, 2017, 171, e173438.	6.2	348
6	High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. American Journal of Human Genetics, 2017, 101, 664-685.	6.2	337
7	Mitochondrial DNA Depletion Syndromes: Review and Updates of Genetic Basis, Manifestations, and Therapeutic Options. Neurotherapeutics, 2013, 10, 186-198.	4.4	255
8	Mitochondrial DNA maintenance defects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1539-1555.	3.8	205
9	Reanalysis of Clinical Exome Sequencing Data. New England Journal of Medicine, 2019, 380, 2478-2480.	27.0	205
10	Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Medicine, 2017, 9, 26.	8.2	184
11	Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genetics in Medicine, 2017, 19, 1380-1397.	2.4	173
12	Mitochondrial Cardiomyopathies. Frontiers in Cardiovascular Medicine, 2016, 3, 25.	2.4	149
13	Therapies for mitochondrial diseases and current clinical trials. Molecular Genetics and Metabolism, 2017, 122, 1-9.	1.1	140
14	Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation. Molecular Genetics and Metabolism, 2012, 105, 607-614.	1.1	127
15	Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. European Journal of Human Genetics, 2014, 22, 79-87.	2.8	112
16	Guanidinoacetate methyltransferase (GAMT) deficiency: Outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Molecular Genetics and Metabolism, 2014, 111, 16-25.	1.1	111
17	Mitochondrial dynamics: Biological roles, molecular machinery, and related diseases. Molecular Genetics and Metabolism, 2018, 125, 315-321.	1.1	99
18	Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations. American Journal of Human Genetics, 2016, 98, 347-357.	6.2	98

#	Article	IF	CITATIONS
19	Recommendations for the Management of Strokelike Episodes in Patients With Mitochondrial Encephalomyopathy, Lactic Acidosis, and Strokelike Episodes. JAMA Neurology, 2016, 73, 591.	9.0	94
20	Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients. Molecular Genetics and Metabolism, 2004, 81, 79-85.	1.1	93
21	Maternal systemic primary carnitine deficiency uncovered by newborn screening: Clinical, biochemical, and molecular aspects. Genetics in Medicine, 2010, 12, 19-24.	2.4	91
22	Disorders of carnitine biosynthesis and transport. Molecular Genetics and Metabolism, 2015, 116, 107-112.	1.1	90
23	Complex Compound Inheritance of Lethal Lung Developmental Disorders Due to Disruption of the TBX-FGF Pathway. American Journal of Human Genetics, 2019, 104, 213-228.	6.2	90
24	Molybdenum cofactor deficiency. Molecular Genetics and Metabolism, 2016, 117, 1-4.	1.1	86
25	Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders. Molecular Genetics and Metabolism, 2012, 107, 247-252.	1.1	84
26	Citrin Deficiency: A Novel Cause of Failure to Thrive That Responds to a High-Protein, Low-Carbohydrate Diet. Pediatrics, 2007, 119, e773-e777.	2.1	81
27	Citrin deficiency, a perplexing global disorder. Molecular Genetics and Metabolism, 2009, 96, 44-49.	1.1	81
28	Primary and secondary alterations of neonatal carnitine metabolism. Seminars in Perinatology, 1999, 23, 152-161.	2.5	80
29	Transition to Next Generation Analysis of the Whole Mitochondrial Genome: A Summary of Molecular Defects. Human Mutation, 2013, 34, 882-893.	2.5	79
30	Utility of Oligonucleotide Array–Based Comparative Genomic Hybridization for Detection of Target Gene Deletions. Clinical Chemistry, 2008, 54, 1141-1148.	3.2	78
31	Epimerase-Deficiency Galactosemia Is Not a Binary Condition. American Journal of Human Genetics, 2006, 78, 89-102.	6.2	77
32	Clinical Consequences of Urea Cycle Enzyme Deficiencies and Potential Links to Arginine and Nitric Oxide Metabolism. Journal of Nutrition, 2004, 134, 2775S-2782S.	2.9	76
33	The Mitochondrial Myopathy Encephalopathy, Lactic Acidosis with??Stroke-Like Episodes (MELAS) Syndrome. CNS Drugs, 2006, 20, 443-464.	5.9	75
34	Mutations in the Chromatin Regulator Gene BRPF1 Cause Syndromic Intellectual Disability and Deficient Histone Acetylation. American Journal of Human Genetics, 2017, 100, 91-104.	6.2	72
35	Early-onset severe neuromuscular phenotype associated with compound heterozygosity for OPA1 mutations. Molecular Genetics and Metabolism, 2011, 103, 383-387.	1.1	71
36	Human mitochondrial transfer RNAs: Role of pathogenic mutation in disease. Muscle and Nerve, 2008, 37, 150-171.	2.2	68

#	Article	IF	CITATIONS
37	Abnormal neurological features predict poor survival and should preclude liver transplantation in patients with deoxyguanosine kinase deficiency. Liver Transplantation, 2008, 14, 1480-1485.	2.4	67
38	Mitochondrial cytopathies. Cell Calcium, 2016, 60, 199-206.	2.4	67
39	Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation. Molecular Genetics and Metabolism, 2016, 117, 407-412.	1.1	64
40	Mitochondrial myopathy, lactic acidosis, and sideroblastic anemia (MLASA) plus associated with a novel de novo mutation (m.8969G>A) in the mitochondrial encoded ATP6 gene. Molecular Genetics and Metabolism, 2014, 113, 207-212.	1.1	63
41	Missense variants in the middle domain of <i>DNM1L</i> in cases of infantile encephalopathy alter peroxisomes and mitochondria when assayed in <i>Drosophila</i> . Human Molecular Genetics, 2016, 25, 1846-1856.	2.9	62
42	Molecular spectrum of SLC22A5 (OCTN2) gene mutations detected in 143 subjects evaluated for systemic carnitine deficiency. Human Mutation, 2010, 31, E1632-E1651.	2.5	61
43	Insights into the Pathogenesis and Treatment of Cancer from Inborn Errors of Metabolism. American Journal of Human Genetics, 2011, 88, 402-421.	6.2	58
44	De Novo Mutations in SLC25A24 Cause a Craniosynostosis Syndrome with Hypertrichosis, Progeroid Appearance, and Mitochondrial Dysfunction. American Journal of Human Genetics, 2017, 101, 833-843.	6.2	56
45	Solid organ transplantation in primary mitochondrial disease: Proceed with caution. Molecular Genetics and Metabolism, 2016, 118, 178-184.	1.1	55
46	Compensating for central nervous system dysmyelination: Females with a proteolipid protein gene duplication and sustained clinical improvement. Annals of Neurology, 2001, 50, 747-754.	5.3	53
47	Novel homoplasmic mutation in the mitochondrialtRNATyr gene associated with atypical mitochondrial cytopathy presenting with focal segmental glomerulosclerosis. American Journal of Medical Genetics Part A, 2003, 123A, 172-178.	2.4	52
48	Untargeted metabolomic profiling reveals multiple pathway perturbations and new clinical biomarkers in urea cycle disorders. Genetics in Medicine, 2019, 21, 1977-1986.	2.4	47
49	Predominant cerebellar volume loss as a neuroradiologic feature of pediatric respiratory chain defects. American Journal of Neuroradiology, 2005, 26, 1675-80.	2.4	47
50	Clinical trials in mitochondrial disorders, an update. Molecular Genetics and Metabolism, 2020, 131, 1-13.	1.1	44
51	Clinical and biochemical improvement with galactose supplementation in SLC35A2-CDG. Genetics in Medicine, 2020, 22, 1102-1107.	2.4	42
52	Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene. Molecular Genetics and Metabolism, 2013, 110, 153-161.	1.1	40
53	Mitochondria: Role of citrulline and arginine supplementation in MELAS syndrome. International Journal of Biochemistry and Cell Biology, 2014, 48, 85-91.	2.8	40
54	Arginine and Citrulline for the Treatment of MELAS Syndrome. FIRE Forum for International Research in Education, 2017, 5, 232640981769739.	0.7	40

#	Article	IF	Citations
55	SLC35A2â€CDG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals. Human Mutation, 2019, 40, 908-925.	2.5	39
56	Safety and efficacy of omaveloxolone in patients with mitochondrial myopathy. Neurology, 2020, 94, e687-e698.	1.1	38
57	Mitochondrial diseases in North America. Neurology: Genetics, 2020, 6, e402.	1.9	38
58	An Integrated Approach to the Diagnosis and Prospective Management of Partial Ornithine Transcarbamylase Deficiency. Pediatrics, 2002, 109, 150-152.	2.1	37
59	Practice patterns of mitochondrial disease physicians in North America. Part 1: Diagnostic and clinical challenges. Mitochondrion, 2014, 14, 26-33.	3.4	36
60	Liver transplantation in propionic and methylmalonic acidemia: A single center study with literature review. Molecular Genetics and Metabolism, 2019, 128, 431-443.	1.1	36
61	A Recurrent De Novo Variant in NACC1 Causes a Syndrome Characterized by Infantile Epilepsy, Cataracts, and Profound Developmental Delay. American Journal of Human Genetics, 2017, 100, 343-351.	6.2	35
62	Clinical and molecular characterization of de novo loss of function variants in <i>HNRNPU</i> American Journal of Medical Genetics, Part A, 2017, 173, 2680-2689.	1.2	34
63	Genotype-phenotype correlations in individuals with pathogenic <i>RERE</i> variants. Human Mutation, 2018, 39, 666-675.	2.5	34
64	Deoxyguanosine kinase deficiency presenting as neonatal hemochromatosis. Molecular Genetics and Metabolism, 2011, 103, 262-267.	1.1	33
65	Glucose metabolism derangements in adults with the MELAS m.3243A>G mutation. Mitochondrion, 2014, 18, 63-69.	3.4	32
66	Biallelic mutations in the ferredoxin reductase gene cause novel mitochondriopathy with optic atrophy. Human Molecular Genetics, 2017, 26, 4937-4950.	2.9	32
67	Functional Characterization of the Carnitine Transporter Defective in Primary Carnitine Deficiency. Archives of Biochemistry and Biophysics, 1999, 364, 99-106.	3.0	30
68	Improvement of regressive autism symptoms in a child with <i>TMLHE</i> deficiency following carnitine supplementation. American Journal of Medical Genetics, Part A, 2015, 167, 2162-2167.	1.2	30
69	Improved clinical outcome following liver transplant in patients with ethylmalonic encephalopathy. American Journal of Medical Genetics, Part A, 2019, 179, 1015-1019.	1.2	30
70	Mitochondrial DNA replication: clinical syndromes. Essays in Biochemistry, 2018, 62, 297-308.	4.7	27
71	Successful liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Molecular Genetics and Metabolism, 2020, 130, 58-64.	1.1	26
72	Milder clinical course of Type IV 3-methylglutaconic aciduria due to a novel mutation in TMEM70. Molecular Genetics and Metabolism, 2010, 101, 282-285.	1.1	25

#	Article	IF	CITATIONS
73	New insights in nutritional management and amino acid supplementation in urea cycle disorders. Molecular Genetics and Metabolism, 2010, 100, S72-S76.	1.1	24
74	Atypical presentation of Leigh syndrome associated with a Leber hereditary optic neuropathy primary mitochondrial DNA mutation. Molecular Genetics and Metabolism, 2011, 103, 153-160.	1.1	24
75	LIPT1 deficiency presenting as early infantile epileptic encephalopathy, Leigh disease, and secondary pyruvate dehydrogenase complex deficiency. American Journal of Medical Genetics, Part A, 2018, 176, 1184-1189.	1.2	24
76	De novo missense variant in the GTPase effector domain (GED) of <i>DNM1L</i> leads to static encephalopathy and seizures. Journal of Physical Education and Sports Management, 2019, 5, a003673.	1.2	24
77	Tetrasomy 13q mosaicism associated with phylloid hypomelanosis and precocious puberty. American Journal of Medical Genetics, Part A, 2009, 149A, 993-996.	1.2	22
78	Adult liver disorders caused by inborn errors of metabolism: Review and update. Molecular Genetics and Metabolism, 2015, 114, 1-10.	1.1	21
79	Milder clinical and biochemical phenotypes associated with the c.482G > A (p.Arg161Gln) pathogenic variant in cobalamin C disease: Implications for management and screening. Molecular Genetics and Metabolism, 2017, 122, 60-66.	1.1	20
80	The Xp contiguous deletion syndrome and autism. American Journal of Medical Genetics, Part A, 2009, 149A, 1138-1148.	1.2	19
81	Corneal clouding, cataract, and colobomas with a novel missense mutation in $\langle i \rangle$ 84GALT7 $\langle i \rangle$ 8 \in "a review of eye anomalies in the linkeropathy syndromes. American Journal of Medical Genetics, Part A, 2016, 170, 2711-2718.	1.2	19
82	DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract. Genetics in Medicine, 2019, 21, 2755-2764.	2.4	19
83	Case report and novel treatment of an autosomal recessive Leigh syndrome caused by shortâ€chain enoylâ€CoA hydratase deficiency. American Journal of Medical Genetics, Part A, 2019, 179, 803-807.	1.2	18
84	The effect of citrulline and arginine supplementation on lactic acidemia in MELAS syndrome. Meta Gene, 2013, 1, 8-14.	0.6	17
85	L-Cysteine supplementation prevents liver transplantation in a patient with TRMU deficiency. Molecular Genetics and Metabolism Reports, 2019, 19, 100453.	1.1	16
86	Hematologic presentation and the role of untargeted metabolomics analysis in monitoring treatment for riboflavin transporter deficiency. American Journal of Medical Genetics, Part A, 2020, 182, 2781-2787.	1.2	15
87	Analysis of fragment size distribution of cell-free DNA: A potential non-invasive marker to monitor graft damage in living-related liver transplantation for inborn errors of metabolism. Molecular Genetics and Metabolism, 2019, 127, 45-50.	1.1	14
88	Neonatal presentation of ventricular tachycardia and a Reye-like syndrome episode associated with disturbed mitochondrial energy metabolism. BMC Pediatrics, 2002, 2, 12.	1.7	13
89	TRMU deficiency: A broad clinical spectrum responsive to cysteine supplementation. Molecular Genetics and Metabolism, 2021, 132, 146-153.	1.1	13
90	Side Effects and Behavioral Outcomes Following High-Dose Carnitine Supplementation Among Young Males With Autism Spectrum Disorder: A Pilot Study. Global Pediatric Health, 2019, 6, 2333794X1983069.	0.7	12

#	Article	IF	CITATIONS
91	Nuclear Gene Defects in Mitochondrial Disorders. Methods in Molecular Biology, 2012, 837, 17-34.	0.9	11
92	Biallelic variants in <i>COX4I1</i> associated with a novel phenotype resembling Leigh syndrome with developmental regression, intellectual disability, and seizures. American Journal of Medical Genetics, Part A, 2019, 179, 2138-2143.	1.2	11
93	Characterization of the renal phenotype in RMND1 â€related mitochondrial disease. Molecular Genetics & Lamp; Genomic Medicine, 2019, 7, e973.	1.2	10
94	Effective Aspirin Treatment of Women at Risk for Preeclampsia Delays the Metabolic Clock of Gestation. Hypertension, 2021, 78, 1398-1410.	2.7	10
95	Molecular bases of hearing loss in multi-systemic mitochondrial cytopathy. Genetics in Medicine, 2006, 8, 641-652.	2.4	9
96	Multiple mitochondrial dysfunctions syndrome 1: An unusual cause of developmental pulmonary hypertension. American Journal of Medical Genetics, Part A, 2020, 182, 755-761.	1.2	8
97	Expansion of the clinical phenotype of <scp>GALE</scp> deficiency. American Journal of Medical Genetics, Part A, 2021, 185, 3118-3121.	1.2	8
98	Differential utilization of systemic and enteral ammonia for urea synthesis in control subjects and ornithine transcarbamylase deficiency carriers. American Journal of Clinical Nutrition, 2003, 78, 749-755.	4.7	7
99	The expanding neurological phenotype of DNM1L-related disorders. Brain, 2018, 141, e28-e28.	7.6	7
100	Niacin therapy improves outcome and normalizes metabolic abnormalities in an NAXD-deficient patient. Brain, 2022, 145, e36-e40.	7.6	6
101	Methionyl-tRNA Formyltransferase (MTFMT) Deficiency Mimicking Acquired Demyelinating Disease. Journal of Child Neurology, 2016, 31, 215-219.	1.4	5
102	Mitochondrial energetic impairment in a patient with lateâ€onset glutaric acidemia Type 2. American Journal of Medical Genetics, Part A, 2020, 182, 2426-2431.	1.2	5
103	A phenotypic expansion of <scp><i>TRNT1</i></scp> associated sideroblastic anemia with immunodeficiency, fevers, and developmental delay. American Journal of Medical Genetics, Part A, 2022, 188, 259-268.	1.2	5
104	<i>GNA11</i> brain somatic pathogenic variant in an individual with phacomatosis pigmentovascularis. Neurology: Genetics, 2019, 5, e366.	1.9	4
105	Severe Generalized Epidermolysis Bullosa Simplex in Two Hong Kong Children due to <i>De Novo</i> Variants in <i>KRT14</i> and <i>KRT5</i> Case Reports in Pediatrics, 2020, 2020, 1-5.	0.4	4
106	Early onset and severe clinical course associated with the m.5540G> A mutation in MT - TW. Molecular Genetics and Metabolism Reports, 2014, 1, 61-65.	1.1	3
107	Acute Strokelike Presentation and Long-term Evolution of Diffusion Restriction Pattern in Ethylmalonic Encephalopathy. Journal of Child Neurology, 2021, 36, 841-852.	1.4	3
108	Sequencing data of cell-free DNA fragments in living-related liver transplantation for inborn errors of metabolism. Data in Brief, 2020, 29, 105183.	1.0	1

#	Article	IF	Citations
109	Community Consensus Guidelines to Support FAIR Data Standards in Clinical Research Studies in Primary Mitochondrial Disease. Genetics & Genomics Next, 2022, 3, 2100047.	1.5	1
110	Deletion (9) (p13.1 p21.1). American Journal of Medical Genetics Part A, 2000, 91, 113-115.	2.4	0
111	In reply to: Proving pathogenicity?when evolution is not enough. American Journal of Medical Genetics Part A, 2004, 131A, 109-110.	2.4	0
112	Rhombencephalosynapsis is a malformation deserving of further study. American Journal of Medical Genetics, Part A, 2011, 155, 2902-2902.	1.2	0
113	Obstetric and Infant Outcomes Following Planned Maternal Third Trimester Exposure to Tenofovir 1% Vaginal Gel. AIDS Research and Human Retroviruses, 2014, 30, A267-A268.	1.1	0
114	11979 Using whole-exome and mtDNA sequencing to develop a testing algorithm for diagnosis of mitochondrial disease in Puerto Ricans. Journal of Clinical and Translational Science, 2021, 5, 106-106.	0.6	0
115	Phenylbutyrate reduces plasma leucine concentrations without affecting the flux of leucine. FASEB Journal, 2007, 21, A335.	0.5	0
116	Mitochondrial immunofluorescence assay as an adjunctive tool in the diagnosis of mitochondrial myopathy. FASEB Journal, 2008, 22, 708.20.	0.5	0
117	Mitochondrial disorders., 2020,, 283-304.		o