
Xian-Long Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8857620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions. Journal of the American Chemical Society, 2012, 134, 8926-8933.	6.6	394
2	Hydrogenâ€Independent Reductive Transformation of Carbohydrate Biomass into γâ€Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts. Angewandte Chemie - International Edition, 2011, 50, 7815-7819.	7.2	316
3	Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chemistry, 2012, 14, 935.	4.6	199
4	Conversion of Biomassâ€Derived Levulinate and Formate Esters into γâ€Valerolactone over Supported Gold Catalysts. ChemSusChem, 2011, 4, 1838-1843.	3.6	96
5	Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2016, 9, 322-332.	3.6	90
6	Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. ChemSusChem, 2015, 8, 3489-3496.	3.6	80
7	Ring-Opening Transformation of 5-Hydroxymethylfurfural Using a Golden Single-Atomic-Site Palladium Catalyst. ACS Catalysis, 2019, 9, 6212-6222.	5.5	60
8	Defect Engineering in Polymeric Cobalt Phthalocyanine Networks for Enhanced Electrochemical CO ₂ Reduction. ChemElectroChem, 2018, 5, 2717-2721.	1.7	52
9	Achieving an exceptionally high loading of isolated cobalt single atoms on a porous carbon matrix for efficient visible-light-driven photocatalytic hydrogen production. Chemical Science, 2019, 10, 2585-2591.	3.7	50
10	Direct methylation of N-methylaniline with CO ₂ /H ₂ catalyzed by gold nanoparticles supported on alumina. RSC Advances, 2015, 5, 99678-99687.	1.7	31
11	A Versatile Aqueous Reduction of Bioâ€Based Carboxylic Acids using Syngas as a Hydrogen Source. ChemSusChem, 2013, 6, 42-46.	3.6	25
12	Total hydrogenation of bio-derived furans over supported Ru subnanoclusters prepared <i>via</i> amino acid-assisted deposition. Green Chemistry, 2020, 22, 850-859.	4.6	15
13	Efficient Hydrogenation of Alkyl Formate to Methanol over Nanocomposite Copper/Alumina Catalysts. ChemCatChem, 2014, 6, 3075-3079.	1.8	13
14	Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 17586-17594.	1.7	13
15	Local structural evolutions of CuO/ZnO/Al2O3 catalyst for methanol synthesis under operando conditions studied by in situ quick X-ray absorption spectroscopy. Nuclear Science and Techniques/Hewuli, 2017, 28, 1.	1.3	11
16	Direct and Efficient Synthesis of Clean H ₂ O ₂ from CO-Assisted Aqueous O ₂ Reduction. ACS Catalysis, 2020, 10, 13993-14005.	5.5	9
17	Molten Salt Treated Cu Foam Catalyst for Selective Electrochemical CO 2 Reduction Reaction. ChemistrySelect, 2020, 5, 11927-11933.	0.7	6
18	Growth of LaCoO ₃ crystals in molten salt: effects of synthesis conditions. CrystEngComm, 2021, 23, 671-677.	1.3	5

#	Article	IF	CITATIONS
19	Size-dependent selectivity of iron-based electrocatalysts for electrochemical CO ₂ reduction. Sustainable Energy and Fuels, 2022, 6, 736-743.	2.5	5
20	Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol. ChemSusChem, 2016, 9, 315-315.	3.6	3