Daniel Hagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8857264/publications.pdf

Version: 2024-02-01

471509 526287 42 884 17 27 citations h-index g-index papers 45 45 45 763 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comparing Multiple Precipitation Products against In-Situ Observations over Different Climate Regions of Pakistan. Remote Sensing, 2019, 11, 628.	4.0	71
2	Trend in Extreme Precipitation Indices Based on Long Term In Situ Precipitation Records over Pakistan. Water (Switzerland), 2020, 12, 797.	2.7	65
3	Large-scale atmospheric circulation patterns associated with extreme monsoon precipitation in Pakistan during 1981–2018. Atmospheric Research, 2021, 253, 105489.	4.1	57
4	Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sensing, 2021, 13, 44.	4.0	50
5	Robust drying and wetting trends found in regions over China based on Köppen climate classifications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4228-4237.	3.3	44
6	Daytime and nighttime heat wave characteristics based on multiple indices over the China–Pakistan economic corridor. Climate Dynamics, 2019, 53, 6329-6349.	3.8	43
7	Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. Journal of Hydrology, 2021, 595, 126037.	5.4	40
8	On the longâ€term changes of drought over China (1948–2012) from different methods of potential evapotranspiration estimations. International Journal of Climatology, 2018, 38, 2954-2966.	3.5	33
9	Evaluation of CMIP5 models and projected changes in temperatures over South Asia under global warming of 1.5 oC, 2 oC, and 3 oC. Atmospheric Research, 2020, 246, 105122.	4.1	33
10	A harmonized global land evaporation dataset from model-based products covering 1980–2017. Earth System Science Data, 2021, 13, 5879-5898.	9.9	31
11	Observed Linkage between Tibetan Plateau Soil Moisture and South Asian Summer Precipitation and the Possible Mechanism. Journal of Climate, 2021, 34, 361-377.	3.2	30
12	Evaluation and projection of precipitation in Pakistan using the Coupled Model Intercomparison Project Phase 6 model simulations. International Journal of Climatology, 2022, 42, 6665-6684.	3.5	30
13	A Time-Varying Causality Formalism Based on the Liang–Kleeman Information Flow for Analyzing Directed Interactions in Nonstationary Climate Systems. Journal of Climate, 2019, 32, 7521-7537.	3.2	29
14	Comparisons of remote sensing and reanalysis soil moisture products over the Tibetan Plateau, China. Cold Regions Science and Technology, 2018, 146, 110-121.	3. 5	27
15	Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product. Theoretical and Applied Climatology, 2019, 138, 1493-1510.	2.8	21
16	A Spatio-Temporal Analysis of Active Fires over China during 2003–2016. Remote Sensing, 2020, 12, 1787.	4.0	21
17	Spatio-temporal analysis of precipitable water vapour over northwest china utilizing MERSI/FY-3A products. International Journal of Remote Sensing, 2018, 39, 3094-3110.	2.9	19
18	Projections of precipitation extremes based on biasâ€corrected Coupled Model Intercomparison Project phase 6 models ensemble over southern Africa. International Journal of Climatology, 2022, 42, 8269-8289.	3.5	18

#	Article	IF	Citations
19	Validation on MERSI/FY-3A precipitable water vapor product. Advances in Space Research, 2018, 61, 413-425.	2.6	17
20	An Evaluation of Soil Moisture Anomalies from Global Model-Based Datasets over the People's Republic of China. Water (Switzerland), 2020, 12, 117.	2.7	16
21	The Evaluation of Single-Sensor Surface Soil Moisture Anomalies over the Mainland of the People's Republic of China. Remote Sensing, 2017, 9, 149.	4.0	14
22	Evaluation of Evapotranspiration Estimates in the Yellow River Basin against the Water Balance Method. Water (Switzerland), 2018, 10, 1884.	2.7	14
23	Coupling of Soil Moisture and Air Temperature from Multiyear Data During 1980–2013 over China. Atmosphere, 2020, 11, 25.	2.3	14
24	Future Changes in Simulated Evapotranspiration across Continental Africa Based on CMIP6 CNRM-CM6. International Journal of Environmental Research and Public Health, 2021, 18, 6760.	2.6	14
25	Evaluation of soil moisture derived from FY3B microwave brightness temperature over the Tibetan Plateau. Remote Sensing Letters, 2016, 7, 817-826.	1.4	13
26	Evapotranspiration and its Components in the Nile River Basin Based on Long-Term Satellite Assimilation Product. Water (Switzerland), 2019, 11, 1400.	2.7	12
27	Attribution of global evapotranspiration trends based on the Budyko framework. Hydrology and Earth System Sciences, 2022, 26, 3691-3707.	4.9	12
28	Inter-comparing and improving land surface temperature estimates from passive microwaves over the Jiangsu province of the People's Republic of China. International Journal of Remote Sensing, 2019, 40, 5563-5584.	2.9	10
29	Spatiotemporal Characteristics and Trend Analysis of Two Evapotranspiration-Based Drought Products and Their Mechanisms in Sub-Saharan Africa. Remote Sensing, 2021, 13, 533.	4.0	10
30	Analysis on Precipitable Water Vapor over the Tibetan Plateau Using FengYun-3A Medium Resolution Spectral Imager Products. Journal of Sensors, 2019, 2019, 1-12.	1.1	9
31	Maximizing Temporal Correlations in Long-Term Global Satellite Soil Moisture Data-Merging. Remote Sensing, 2020, 12, 2164.	4.0	8
32	The Greening and Wetting of the Sahel Have Leveled off since about 1999 in Relation to SST. Remote Sensing, 2020, 12, 2723.	4.0	8
33	Drying and Wetting Trends and Vegetation Covariations in the Drylands of China. Water (Switzerland), 2020, 12, 933.	2.7	8
34	A Methodology to Generate Integrated Land Cover Data for Land Surface Model by Improving Dempster-Shafer Theory. Remote Sensing, 2022, 14, 972.	4.0	8
35	Forest Canopy Changes in the Southern Amazon during the 2019 Fire Season Based on Passive Microwave and Optical Satellite Observations. Remote Sensing, 2021, 13, 2238.	4.0	7
36	Improved surface soil moisture anomalies from Fengyun-3B over the Jiangxi province of the People's Republic of China. International Journal of Remote Sensing, 2018, 39, 8950-8962.	2.9	6

3

#	Article	IF	CITATION
37	Changes of Soil Moisture from Multiple Sources during 1988–2010 in the Yellow River Basin, China. Advances in Meteorology, 2018, 2018, 1-14.	1.6	5
38	High Spatial Resolution Simulation of Sunshine Duration over the Complex Terrain of Ghana. Sensors, 2019, 19, 1743.	3.8	4
39	Analysis of the longâ€term highâ€resolution infrared radiation sounder land surface temperature against ground measurements during 1980–2009 in the Poyang Lake basin, China. International Journal of Climatology, 2018, 38, 5733-5745.	3.5	3
40	Longâ€ŧerm changes in layered soil temperature based on ground measurements in Jiangsu Province, China. International Journal of Climatology, 2021, 41, 2996-3009.	3.5	3
41	Towards Consistent Soil Moisture Records from China's FengYun-3 Microwave Observations. Remote Sensing, 2022, 14, 1225.	4.0	3
42	Projections of Drought Characteristics Based on the CNRM-CM6 Model over Africa. Agriculture (Switzerland), 2022, 12, 495.	3.1	3