
Teresa de Diego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8857061/publications.pdf Version: 2024-02-01

TERESA DE DIECO

#	Article	IF	CITATIONS
1	The Nutrition in Early Life and Asthma (NELA) birth cohort study: Rationale, design, and methods. Paediatric and Perinatal Epidemiology, 2022, 36, 310-324.	1.7	9
2	Relationship between lung function and exhaled volatile organic compounds in healthy infants. Pediatric Pulmonology, 2022, 57, 1282-1292.	2.0	6
3	Influence of Home Indoor Dampness Exposure on Volatile Organic Compounds in Exhaled Breath of Mothers and Their Infants: The NELA Birth Cohort. Applied Sciences (Switzerland), 2022, 12, 6864.	2.5	1
4	Exhaled volatile organic compounds analysis in clinical pediatrics: a systematic review. Pediatric Research, 2021, 89, 1352-1363.	2.3	19
5	Engineering of microbial cell factories for production of plant-based natural products. , 2021, , 381-392.		1
6	Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Frontiers in Microbiology, 2021, 12, 682001.	3.5	42
7	Exhaled volatilome analysis as a useful tool to discriminate asthma with other coexisting atopic diseases in women of childbearing age. Scientific Reports, 2021, 11, 13823.	3.3	9
8	Bacterial Sirtuins Overview: An Open Niche to Explore. Frontiers in Microbiology, 2021, 12, 744416.	3.5	10
9	An ideal spacing is required for the control of Class II CRP-dependent promoters by the status of CRP K100. FEMS Microbiology Letters, 2020, 367, .	1.8	2
10	A Compressive Review about Taxol®: History and Future Challenges. Molecules, 2020, 25, 5986.	3.8	148
11	Data preprocessing workflow for exhaled breath analysis by GC/MS using open sources. Scientific Reports, 2020, 10, 22008.	3.3	16
12	Engineering protein production by rationally choosing a carbon and nitrogen source using E. coli BL21 acetate metabolism knockout strains. Microbial Cell Factories, 2019, 18, 151.	4.0	38
13	Characterization of acetyl-CoA synthetase kinetics and ATP-binding. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1040-1049.	2.4	13
14	An acetylatable lysine controls CRP function in <i>E. coli</i> . Molecular Microbiology, 2018, 107, 116-131.	2.5	51
15	Study of acetate metabolism using different carbon and nitrogen sources in Escherichia coli. New Biotechnology, 2018, 44, S87-S88.	4.4	0
16	Characterization of CobB kinetics and inhibition by nicotinamide. PLoS ONE, 2017, 12, e0189689.	2.5	20
17	Lycopene overproduction and in situ extraction in organic-aqueous culture systems using a metabolically engineered Escherichia coli. AMB Express, 2015, 5, 65.	3.0	17
18	The Protein Acetyltransferase PatZ from Escherichia coli Is Regulated by Autoacetylation-induced Oligomerization. Journal of Biological Chemistry, 2015, 290, 23077-23093.	3.4	29

TERESA DE DIEGO

#	Article	IF	CITATIONS
19	Regulation of bacterial physiology by lysine acetylation of proteins. New Biotechnology, 2014, 31, 586-595.	4.4	107
20	Selective synthesis of panthenyl esters by a kinetically controlled enzymatic process. Biocatalysis and Biotransformation, 2013, 31, 175-180.	2.0	2
21	An efficient activity ionic liquid-enzyme system for biodiesel production. Green Chemistry, 2011, 13, 444.	9.0	78
22	A recyclable enzymatic biodiesel production process in ionic liquids. Bioresource Technology, 2011, 102, 6336-6339.	9.6	68
23	Enzymatic Membrane Reactor for Resolution of Ketoprofen in Ionic Liquids and Supercritical Carbon Dioxide. ACS Symposium Series, 2010, , 25-34.	0.5	1
24	Enzyme Catalysis in Ionic Liquids and Supercritical Carbon Dioxide. ACS Symposium Series, 2010, , 181-196.	0.5	3
25	Supported Ionic Liquid-Like Phases (SILLPs) for enzymatic processes: Continuous KR and DKR in SILLP–scCO2 systems. Green Chemistry, 2010, 12, 1803.	9.0	60
26	Dynamic Kinetic Resolution of Sec-Alcohols in Ionic Liquids/Supercritical Carbon Dioxide Biphasic Systems. International Journal of Chemical Reactor Engineering, 2009, 7, .	1.1	8
27	On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis. Journal of Biotechnology, 2009, 140, 234-241.	3.8	104
28	Long term continuous chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol using ionic liquids and supercritical carbon dioxide. Green Chemistry, 2009, 11, 538.	9.0	59
29	A Continuous Reactor for the (Chemo)enzymatic Dynamic Kinetic Resolution of Rac-1-Phenylethanol in Ionic Liquid/Supercritical Carbon Dioxide Biphasic Systems. International Journal of Chemical Reactor Engineering, 2007, 5, .	1.1	11
30	lonic liquids improve citronellyl ester synthesis catalyzed by immobilized Candida antarctica lipase B in solvent-free media. Green Chemistry, 2007, 9, 780.	9.0	73
31	Bioreactors Based on Monolith-Supported Ionic Liquid Phase for Enzyme Catalysis in Supercritical Carbon Dioxide. Advanced Synthesis and Catalysis, 2007, 349, 1077-1084.	4.3	128
32	On the importance of the supporting material for activity of immobilized Candida antarctica lipase B in ionic liquid/hexane and ionic liquid/supercritical carbon dioxide biphasic media. Journal of Supercritical Fluids, 2007, 40, 93-100.	3.2	72
33	Toward Green Processes for Fine Chemicals Synthesis: Biocatalysis in Ionic Liquid—Supercritical Carbon Dioxide Biphasic Systems. ACS Symposium Series, 2007, , 209-223.	0.5	1
34	Immobilization of Enzymes for Use in Supercritical Fluids. Methods in Biotechnology, 2006, , 269-282.	0.2	1
35	Immobilization of Enzymes for Use in Ionic Liquids. Methods in Biotechnology, 2006, , 257-268.	0.2	7
36	Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids/supercritical carbon dioxide systems. Biotechnology Letters, 2006, 28, 1559-1565.	2.2	68

Teresa de Diego

#	Article	IF	CITATIONS
37	Dynamic structure–function relationships in enzyme stabilization by ionic liquids. Biocatalysis and Biotransformation, 2005, 23, 169-176.	2.0	70
38	Understanding Structureâ^'Stability Relationships ofCandidaantarticaLipase B in Ionic Liquids. Biomacromolecules, 2005, 6, 1457-1464.	5.4	301
39	Criteria to Design Green Enzymatic Processes in Ionic Liquid/Supercritical Carbon Dioxide Systems. Biotechnology Progress, 2004, 20, 661-669.	2.6	134
40	Fluorescence and CD spectroscopic analysis of the ?-chymotrypsin stabilization by the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnology and Bioengineering, 2004, 88, 916-924.	3.3	190
41	Synthesis of glycidyl esters catalyzed by lipases in ionic liquids and supercritical carbon dioxide. Journal of Molecular Catalysis A, 2004, 214, 113-119.	4.8	61
42	Enzymatic Catalysis in Ionic Liquids and Supercritical Carbon Dioxide. ACS Symposium Series, 2003, , 239-250.	0.5	9
43	Enzymatic ester synthesis in ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 9-13.	1.8	114
44	Ester synthesis from trimethylammonium alcohols in dry organic media catalyzed by immobilizedCandida antarctica lipase B. Biotechnology and Bioengineering, 2003, 82, 352-358.	3.3	15
45	Membrane cell retention systems for continuous production of -carnitine using Proteus sp Journal of Membrane Science, 2003, 214, 101-111.	8.2	12
46	Lipase Catalysis in Ionic Liquids and Supercritical Carbon Dioxide at 150 °C. Biotechnology Progress, 2003, 19, 380-382.	2.6	136
47	Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chemical Communications, 2002, , 692-693.	4.1	212
48	Active membranes coated with immobilized Candida antarctica lipase B: preparation and application for continuous butyl butyrate synthesis in organic media. Journal of Membrane Science, 2002, 201, 55-64.	8.2	69
49	Stabilization of ?-chymotrypsin by ionic liquids in transesterification reactions. Biotechnology and Bioengineering, 2001, 75, 563-569.	3.3	233
50	Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnology Letters, 2001, 23, 1529-1533.	2.2	223
51	Title is missing!. Biotechnology Letters, 2000, 22, 771-775.	2.2	15
52	Effect of sorbitol on immobilized α-chymotrypsin thermostability in low-water system. Progress in Biotechnology, 1998, 15, 411-416.	0.2	0
53	Dynamic Structure/Function Relationships in the alpha-Chymotrypsin Deactivation Process by Heat and pH. FEBS Journal, 1997, 248, 80-85.	0.2	55
54	Title is missing!. Biotechnology Letters, 1997, 19, 1005-1009.	2.2	9

#	Article	IF	CITATIONS
55	Influence of Water-Miscible Aprotic Solvents on α-Chymotrypsin Stability. Biotechnology Progress, 1996, 12, 488-493.	2.6	23
56	Effect of water-miscible aprotic solvents on kyotorphin synthesis catalyzed by immobilized ?-chymotrypsin. Biotechnology Letters, 1995, 17, 603-608.	2.2	26