Ismael Galve-Roperh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8856927/publications.pdf

Version: 2024-02-01

83 papers 8,330 citations

44069 48 h-index 78 g-index

84 all docs 84 docs citations

84 times ranked 6378 citing authors

#	Article	IF	CITATIONS
1	Cannabinoid CB1 receptor gene inactivation in oligodendrocyte precursors disrupts oligodendrogenesis and myelination in mice. Cell Death and Disease, 2022, 13, .	6.3	6
2	î" ⁹ â€Tetrahydrocannabinol promotes oligodendrocyte development and CNS myelination in vivo. Glia, 2021, 69, 532-545.	4.9	21
3	Identification of BiP as a CB ₁ Receptor-Interacting Protein That Fine-Tunes Cannabinoid Signaling in the Mouse Brain. Journal of Neuroscience, 2021, 41, 7924-7941.	3.6	14
4	î" 9 â€√etrahydrocannabinol promotes functional remyelination in the mouse brain. British Journal of Pharmacology, 2021, 178, 4176-4192.	5.4	11
5	Cannabinoid-induced motor dysfunction <i>via</i> autophagy inhibition. Autophagy, 2020, 16, 2289-2291.	9.1	1
6	Endocannabinoid signalling in stem cells and cerebral organoids drives differentiation to deep layer projection neurons via CB1 receptors. Development (Cambridge), 2020, 147, .	2.5	9
7	Possible therapeutic applications of cannabis in the neuropsychopharmacology field. European Neuropsychopharmacology, 2020, 36, 217-234.	0.7	24
8	Long-term hippocampal interneuronopathy drives sex-dimorphic spatial memory impairment induced by prenatal THC exposure. Neuropsychopharmacology, 2020, 45, 877-886.	5.4	51
9	Inhibition of striatonigral autophagy as a link between cannabinoid intoxication and impairment of motor coordination. ELife, 2020, 9, .	6.0	7
10	Oral administration of the cannabigerol derivative VCE-003.2 promotes subventricular zone neurogenesis and protects against mutant huntingtin-induced neurodegeneration. Translational Neurodegeneration, 2019, 8, 9.	8.0	24
11	Astroglial monoacylglycerol lipase controls mutant huntingtin-induced damage of striatal neurons. Neuropharmacology, 2019, 150, 134-144.	4.1	15
12	Pathway-Specific Control of Striatal Neuron Vulnerability by Corticostriatal Cannabinoid CB1 Receptors. Cerebral Cortex, 2018, 28, 307-322.	2.9	25
13	Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum. Neuropsychopharmacology, 2018, 43, 964-977.	5.4	52
14	Cannabinoid signalling in the immature brain: Encephalopathies and neurodevelopmental disorders. Biochemical Pharmacology, 2018, 157, 85-96.	4.4	16
15	Contribution of Altered Endocannabinoid System to Overactive mTORC1 Signaling in Focal Cortical Dysplasia. Frontiers in Pharmacology, 2018, 9, 1508.	3.5	8
16	Loss of Cannabinoid CB ₁ Receptors Induces Cortical Migration Malformations and Increases Seizure Susceptibility. Cerebral Cortex, 2017, 27, 5303-5317.	2.9	23
17	Cannabinoids as Regulators of Neural Development and Adult Neurogenesis. Pancreatic Islet Biology, 2017, , 117-136.	0.3	4
18	Cannabinoid Type-2 Receptor Drives Neurogenesis and Improves Functional Outcome After Stroke. Stroke, 2017, 48, 204-212.	2.0	58

#	Article	IF	CITATIONS
19	Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders. Frontiers in Pharmacology, 2017, 8, 269.	3.5	116
20	A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington's disease. Journal of Neurology, 2016, 263, 1390-1400.	3.6	105
21	Sustained Gq-Protein Signaling Disrupts Striatal Circuits via JNK. Journal of Neuroscience, 2016, 36, 10611-10624.	3.6	12
22	VCE-003.2, a novel cannabigerol derivative, enhances neuronal progenitor cell survival and alleviates symptomatology in murine models of Huntington's disease. Scientific Reports, 2016, 6, 29789.	3.3	61
23	MicroRNA let-7d is a target of cannabinoid CB 1 receptor and controls cannabinoid signaling. Neuropharmacology, 2016, 108, 345-352.	4.1	23
24	The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death and Differentiation, 2015, 22, 1618-1629.	11.2	109
25	Δ-Tetrahydrocannabinol alone and combined with cannabidiol mitigate fear memory through reconsolidation disruption. European Neuropsychopharmacology, 2015, 25, 958-965.	0.7	62
26	Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB ₁ receptors on developing cortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13693-13698.	7.1	120
27	CB ₁ Cannabinoid Receptor-Dependent Activation of mTORC1/Pax6 Signaling Drives Tbr2 Expression and Basal Progenitor Expansion in the Developing Mouse Cortex. Cerebral Cortex, 2015, 25, 2395-2408.	2.9	30
28	A restricted population of CB $<$ sub $>$ 1 $<$ /sub $>$ cannabinoid receptors with neuroprotective activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8257-8262.	7.1	136
29	Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Progress in Lipid Research, 2013, 52, 633-650.	11.6	240
30	Anandamide deficiency and heightened neuropathic pain in aged mice. Neuropharmacology, 2013, 71, 204-215.	4.1	26
31	The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. International Journal of Neuropsychopharmacology, 2013, 16, 1407-1419.	2.1	225
32	Cannabinoids, Neurogenesis and Antidepressant Drugs: Is there a Link?. Current Neuropharmacology, 2013, 11, 263-275.	2.9	20
33	Endocannabinoids via CB ₁ receptors act as neurogenic niche cues during cortical development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3229-3241.	4.0	76
34	The CB ₁ Cannabinoid Receptor Drives Corticospinal Motor Neuron Differentiation through the Ctip2/Satb2 Transcriptional Regulation Axis. Journal of Neuroscience, 2012, 32, 16651-16665.	3.6	79
35	CB2 Cannabinoid Receptors Promote Neural Progenitor Cell Proliferation via mTORC1 Signaling. Journal of Biological Chemistry, 2012, 287, 1198-1209.	3.4	145
36	Cannabis, endocannabinoids and neurodevelopment., 2011,, 66-81.		2

#	Article	IF	CITATIONS
37	Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain, 2011, 134, 119-136.	7.6	178
38	The endocannabinoid system and the regulation of neural development: potential implications in psychiatric disorders. European Archives of Psychiatry and Clinical Neuroscience, 2009, 259, 371-382.	3.2	94
39	Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain, 2009, 132, 3152-3164.	7.6	323
40	The CB2 Cannabinoid Receptor Controls Myeloid Progenitor Trafficking. Journal of Biological Chemistry, 2008, 283, 13320-13329.	3.4	141
41	Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8760-8765.	7.1	263
42	Mechanisms of Control of Neuron Survival by the Endocannabinoid System. Current Pharmaceutical Design, 2008, 14, 2279-2288.	1.9	113
43	Targeting Cannabinoid Receptors in Brain Tumors. , 2008, , 361-374.		1
44	The CB1 Cannabinoid Receptor Mediates Excitotoxicity-induced Neural Progenitor Proliferation and Neurogenesis. Journal of Biological Chemistry, 2007, 282, 23892-23898.	3.4	146
45	Cannabinoids Induce Glioma Stem-like Cell Differentiation and Inhibit Gliomagenesis. Journal of Biological Chemistry, 2007, 282, 6854-6862.	3.4	116
46	The emerging functions of endocannabinoid signaling during CNS development. Trends in Pharmacological Sciences, 2007, 28, 83-92.	8.7	357
47	The Endocannabinoid System and Neurogenesis in Health and Disease. Neuroscientist, 2007, 13, 109-114.	3.5	107
48	Cannabinoids and Gliomas. Molecular Neurobiology, 2007, 36, 60-67.	4.0	82
49	A pilot clinical study of î"9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. British Journal of Cancer, 2006, 95, 197-203.	6.4	287
50	R-(+)-[2,3-Dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphtalenylmethanc (WIN-2) ameliorates experimental autoimmune encephalomyelitis and induces encephalitogenic T cell apoptosis: Partial involvement of the CB2 receptor. Biochemical Pharmacology, 2006, 72, 1697-1706.	one 4.4	53
51	Endocannabinoids: A New Family of Lipid Mediators Involved in the Regulation of Neural Cell Development. Current Pharmaceutical Design, 2006, 12, 2319-2325.	1.9	86
52	Nonâ€psychoactive CB 2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB Journal, 2006, 20, 2405-2407.	0.5	201
53	The Endocannabinoid System Promotes Astroglial Differentiation by Acting on Neural Progenitor Cells. Journal of Neuroscience, 2006, 26, 1551-1561.	3.6	225
54	The endocannabinoid system drives neural progenitor proliferation. FASEB Journal, 2005, 19, 1704-1706.	0.5	291

#	Article	IF	Citations
55	Cannabinoids and ceramide: Two lipids acting hand-by-hand. Life Sciences, 2005, 77, 1723-1731.	4.3	69
56	Hypothesis: cannabinoid therapy for the treatment of gliomas?. Neuropharmacology, 2004, 47, 315-323.	4.1	70
57	Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. Journal of Cell Biology, 2002, 158, 1039-1049.	5.2	160
58	The Endocannabinoid Anandamide Inhibits Neuronal Progenitor Cell Differentiation through Attenuation of the Rap1/B-Raf/ERK Pathway. Journal of Biological Chemistry, 2002, 277, 46645-46650.	3.4	212
59	Direct Calcium Binding Results in Activation of Brain Serine Racemase. Journal of Biological Chemistry, 2002, 277, 27782-27792.	3.4	116
60	Mechanism of Extracellular Signal-Regulated Kinase Activation by the CB1 Cannabinoid Receptor. Molecular Pharmacology, 2002, 62, 1385-1392.	2.3	173
61	Cannabinoids and cell fate. , 2002, 95, 175-184.		148
62	Evidence for the Lack of Involvement of Sphingomyelin Hydrolysis in the Tumor Necrosis Factor-Induced Secretion of Nerve Growth Factor in Primary Astrocyte Cultures. Journal of Neurochemistry, 2002, 71, 498-505.	3.9	10
63	Ceramide Signaling in Cannabinoid Action. Molecular Biology Intelligence Unit, 2002, , 125-132.	0.2	0
64	Ceramide: a new second messenger of cannabinoid action. Trends in Pharmacological Sciences, 2001, 22, 19-22.	8.7	115
65	The CB ₁ Cannabinoid Receptor of Astrocytes Is Coupled to Sphingomyelin Hydrolysis through the Adaptor Protein Fan. Molecular Pharmacology, 2001, 59, 955-959.	2.3	98
66	Control of the cell survival/death decision by cannabinoids. Journal of Molecular Medicine, 2001, 78, 613-625.	3.9	207
67	The Stimulation of Ketogenesis by Cannabinoids in Cultured Astrocytes Defines Carnitine Palmitoyltransferase I as a New Ceramide-Activated Enzyme. Journal of Neurochemistry, 2001, 72, 1759-1768.	3.9	72
68	Signaling at zero g: a comment. Trends in Biochemical Sciences, 2001, 26, 533.	7.5	1
69	Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Medicine, 2000, 6, 313-319.	30.7	610
70	The CB $<$ sub $>$ 1 $<$ /sub $>$ Cannabinoid Receptor Is Coupled to the Activation of c-Jun N-Terminal Kinase. Molecular Pharmacology, 2000, 58, 814-820.	2.3	186
71	Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7859-7864.	7.1	192
72	De novoâ€synthesized ceramide signals apoptosis in astrocytes via extracellular signalâ€regulated kinase. FASEB Journal, 2000, 14, 2315-2322.	0.5	144

#	Article	IF	CITATIONS
73	Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells. FEBS Letters, 1999, 463, 235-240.	2.8	145
74	î"9-Tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Letters, 1998, 436, 6-10.	2.8	248
75	Involvement of Sphingomyelin Hydrolysis and the Mitogen-Activated Protein Kinase Cascade in the î" ⁹ -Tetrahydrocannabinol-Induced Stimulation of Glucose Metabolism in Primary Astrocytes. Molecular Pharmacology, 1998, 54, 834-843.	2.3	189
76	cAMP signalling mechanisms with aging in the Ceratitis capitata brain. Mechanisms of Ageing and Development, 1997, 97, 45-53.	4.6	13
77	Ceramide-induced translocation of protein kinase C \hat{I}_{1} in primary cultures of astrocytes. FEBS Letters, 1997, 415, 271-274.	2.8	36
78	Induction of nerve growth factor synthesis by sphingomyelinase and ceramide in primary astrocyte cultures. Molecular Brain Research, 1997, 52, 90-97.	2.3	35
79	Adaptations of the \hat{l}^2 -adrenoceptor-adenylyl cyclase system in rat skeletal muscle to endurance physical training. Pflugers Archiv European Journal of Physiology, 1997, 434, 809-814.	2.8	13
80	Regulation of nerve growth factor secretion and mRNA expression by bacterial lipopolysaccharide in primary cultures of rat astrocytes. , 1997, 49, 569-575.		23
81	Levels and activity of brain protein kinase C \hat{l}_{\pm} and \hat{l}_{\P} during the aging of the medfly. Mechanisms of Ageing and Development, 1996, 92, 21-29.	4.6	5
82	Addition of phosphatidylcholine-phospholipase C induces cellular redistribution and phosphorylation of protein kinase C $\hat{l}^3/4$ in C 6 glial cells. Neuroscience Letters, 1996, 219, 68-70.	2.1	5
83	Phosphatidylcholine-phospholipase C mediates the induction of nerve growth factor in cultured glial cells. FEBS Letters, 1995, 364, 301-304.	2.8	15