
Jennifer A Irvin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8856732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enabling Conducting Polymer Applications: Methods for Achieving High Molecular Weight in Chemical Oxidative Polymerization in Alkyl- and Ether-Substituted Thiophenes. Materials, 2021, 14, 6146.	2.9	4
2	Conducting Polymer-Based Electrochemical Aptasensor for the Detection of Adenosine. ACS Applied Polymer Materials, 2021, 3, 6674-6683.	4.4	5
3	Induction of Immunogenic Cell Death in Breast Cancer by Conductive Polymer Nanoparticle-Mediated Photothermal Therapy. ACS Applied Polymer Materials, 2020, 2, 5602-5620.	4.4	16
4	Biomedical Application of ElectroactiveÂPolymers in Electrochemical Sensors: A Review. Materials, 2019, 12, 2629.	2.9	32
5	Self-Assembly of Tetrameric and Hexameric Terpyridine-Based Macrocycles Using Cd(II), Zn(II), and Fe(II). Inorganic Chemistry, 2018, 57, 3548-3558.	4.0	21
6	Conductive polymer-based nanoparticles for laser-mediated photothermal ablation of cancer: synthesis, characterization, and in vitro evaluation. International Journal of Nanomedicine, 2017, Volume 12, 615-632.	6.7	36
7	Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties. Journal of Visualized Experiments, 2016, , .	0.3	5
8	Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 22-39.	3.5	37
9	Polymers for Charge Storage. , 2014, , 1-9.		0
10	Donor–acceptor–donor polymers utilizing pyrimidine-based acceptors. Reactive and Functional Polymers, 2014, 83, 113-122.	4.1	2
11	Dominant ion transport processes of ionic liquid electrolyte in poly(3,4â€ethylenedioxythiophene). Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 337-342.	2.1	8
12	High molecular weight copolymers of vinylferrocene and 3-phenyl[5]ferrocenophane-1,5-dimethylene with various N-substituted maleimides. Reactive and Functional Polymers, 2013, 73, 730-736.	4.1	5
13	Synthesis and Electropolymerization of 3,5-Bis-(3,4-ethylenedioxythien-2-yl)-4,4-dimethyl Isopyrazole: A Donor-Acceptor-Donor Monomer. Journal of the Electrochemical Society, 2013, 160, G111-G116.	2.9	8
14	Electroactive polymer-based electrochemical capacitors using poly(benzimidazo-benzophenanthroline) and its pyridine derivative poly(4-aza-benzimidazo-benzophenanthroline) as cathode materials with ionic liquid electrolyte. Journal of Power Sources, 2012, 220, 236-242.	7.8	31
15	Enhanced electrochemical response of solutionâ€deposited nâ€doping polymer via cocasting with ionic liquid. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1145-1150.	2.1	7
16	Poly(propylenedioxy)thiophene-Based Supercapacitors Operating at Low Temperatures. Journal of the Electrochemical Society, 2010, 157, A298.	2.9	14
17	Electrochemical Deposition of a New n-Doping Polymer Based on Bis(thienyl)isopyrazole. Journal of the Electrochemical Society, 2007, 154, G95.	2.9	7
18	Synthesis and Thermal Characterization of Perfluorocyclobutyl(PFCB) Polymers Containing Crown Ether Vertebrae, Macromolecular Chemistry and Physics, 2004, 205, 801-805,	2.2	10

Jennifer A Irvin

#	Article	IF	CITATIONS
19	Progress in using conductive polymers as corrosion-inhibiting coatings. Radiation Physics and Chemistry, 2003, 68, 387-394.	2.8	157
20	Improved Synthesis and Corrosion Properties of Poly(bis-(dialkylamino)phenylene vinylene)s (BAMPPV). ACS Symposium Series, 2003, , 140-155.	0.5	0
21	Synthesis and characterization of chiral conjugated polymers for optical waveguides. , 2002, , .		Ο
22	Low-oxidation-potential conducting polymers derived from 3,4-ethylenedioxythiophene and dialkoxybenzenes. Journal of Polymer Science Part A, 2001, 39, 2164-2178.	2.3	57
23	Low oxidation potential conducting polymers based on 1,4-bis[2-(3,4-ethylenedioxy)thienyl]-2,5-dialkoxybenzenes. Synthetic Metals, 1999, 102, 965-966.	3.9	4
24	Low-oxidation-potential conducting polymers: Alternating substituted para-phenylene and 3,4-ethylenedioxythiophene repeat units. Polymer, 1998, 39, 2339-2347.	3.8	52
25	Electrochromic and Redox Electroactive Polymers Based on Ethylenedioxythiophene Derivatives. Materials Research Society Symposia Proceedings, 1995, 413, 373.	0.1	Ο
26	Polyethers derived from bisphenols and highly fluorinated aromatics. Journal of Polymer Science Part A, 1992, 30, 1675-1679.	2.3	48