Daniel Wallach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8856720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A traitâ€based model ensemble approach to design rice plant types for future climate. Global Change Biology, 2022, 28, 2689-2710.	4.2	8
2	Decomposing crop model uncertainty: A systematic review. Field Crops Research, 2022, 279, 108448.	2.3	29
3	Multi-model evaluation of phenology prediction for wheat in Australia. Agricultural and Forest Meteorology, 2021, 298-299, 108289.	1.9	17
4	How well do crop modeling groups predict wheat phenology, given calibration data from the target population?. European Journal of Agronomy, 2021, 124, 126195.	1.9	27
5	The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise. Environmental Modelling and Software, 2021, 145, 105206.	1.9	31
6	Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging. Agricultural and Forest Meteorology, 2021, 311, 108686.	1.9	13
7	Comparison of three calibration methods for modeling rice phenology. Agricultural and Forest Meteorology, 2020, 280, 107785.	1.9	40
8	A new approach to crop model calibration: Phenotyping plus postâ€processing. Crop Science, 2020, 60, 709-720.	0.8	12
9	Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model. European Journal of Agronomy, 2020, 115, 126031.	1.9	12
10	A SIMPLE crop model. European Journal of Agronomy, 2019, 104, 97-106.	1.9	67
11	Global wheat production with 1.5 and 2.0°C above preâ€industrial warming. Global Change Biology, 2019, 25, 1428-1444.	4.2	107
12	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	4.2	312
13	Basics of Agricultural System Models. , 2019, , 3-43.		5
14	Regression Analysis, Frequentist. , 2019, , 161-205.		0
15	Model Evaluation. , 2019, , 311-373.		3
16	Multimodel Ensembles. , 2019, , 425-443.		0
17	Gene-Based Crop Models. , 2019, , 445-486.		0

#	Article	IF	CITATIONS
19	Parameter Estimation With Bayesian Methods. , 2019, , 275-309.		1
20	Data requirements for crop modelling—Applying the learning curve approach to the simulation of winter wheat flowering time under climate change. European Journal of Agronomy, 2018, 95, 33-44.	1.9	6
21	Towards improved calibration of crop models – Where are we now and where should we go?. European Journal of Agronomy, 2018, 94, 25-35.	1.9	113
22	Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming. European Journal of Agronomy, 2018, 94, 46-53.	1.9	31
23	Improving the use of crop models for risk assessment and climate change adaptation. Agricultural Systems, 2018, 159, 296-306.	3.2	122
24	Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 2018, 9, 4249.	5.8	230
25	A dynamic model with QTL covariables for predicting flowering time of common bean (Phaseolus) Tj ETQq1 1 0.7	'84314 rgl 1.9	BT /Overlock
26	Multimodel ensembles improve predictions of crop–environment–management interactions. Global Change Biology, 2018, 24, 5072-5083.	4.2	111
27	Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 2017, 202, 5-20.	2.3	109
28	The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 2017, 3, 17102.	4.7	170
29	The implication of input data aggregation on up-scaling soil organic carbon changes. Environmental Modelling and Software, 2017, 96, 361-377.	1.9	28
30	Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9326-9331.	3.3	1,708
31	Accounting for both parameter and model structure uncertainty in crop model predictions of phenology: A case study on rice. European Journal of Agronomy, 2017, 88, 53-62.	1.9	53
32	Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments. Scientific Reports, 2017, 7, 14858.	1.6	41
33	Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLoS ONE, 2016, 11, e0151782.	1.1	78
34	Multi-wheat-model ensemble responses to interannual climate variability. Environmental Modelling and Software, 2016, 81, 86-101.	1.9	50
35	Estimating model prediction error: Should you treat predictions as fixed or random?. Environmental Modelling and Software, 2016, 84, 529-539.	1.9	27
36	Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2. Field Crops Research, 2016, 198, 80-92.	2.3	47

#	Article	IF	CITATIONS
37	A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation. Environmental Modelling and Software, 2016, 85, 332-341.	1.9	18
38	Lessons from climate modeling on the design and use of ensembles for crop modeling. Climatic Change, 2016, 139, 551-564.	1.7	66
39	Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6, 1130-1136.	8.1	352
40	Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe. Environmental Research Letters, 2016, 11, 074007.	2.2	37
41	Spatial sampling of weather data for regional crop yield simulations. Agricultural and Forest Meteorology, 2016, 220, 101-115.	1.9	35
42	Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environmental Modelling and Software, 2016, 80, 100-112.	1.9	26
43	Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 2015, 72, 287-303.	1.9	230
44	Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling and Software, 2015, 70, 128-137.	1.9	27
45	Developing skills: how to train adaptive modelers. Advances in Animal Biosciences, 2015, 6, 52-53.	1.0	0
46	A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 2015, 214-215, 483-493.	1.9	31
47	Uncertainty in Agricultural Impact Assessment. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 223-259.	0.4	8
48	Uncertainties in Scaling-Up Crop Models for Large-Area Climate Change Impact Assessments. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 261-277.	0.4	11
49	Rising temperatures reduce global wheatÂproduction. Nature Climate Change, 2015, 5, 143-147.	8.1	1,544
50	Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 2015, 21, 911-925.	4.2	387
51	Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Climate Research, 2015, 65, 141-157.	0.4	43
52	Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. Climate Research, 2015, 65, 53-69.	0.4	39
53	Parameter Estimation with Bayesian Methods. , 2014, , 277-309.		1
54	The error in agricultural systems model prediction depends on the variable being predicted. Environmental Modelling and Software, 2014, 62, 487-494.	1.9	11

#	Article	IF	CITATIONS
55	Combining input uncertainty and residual error in crop model predictions: A case study on vineyards. European Journal of Agronomy, 2014, 52, 191-197.	1.9	23
56	Parameter Estimation with Classical Methods (Model Calibration). , 2014, , 205-276.		2
57	Model Evaluation. , 2014, , 345-406.		13
58	Predicting Maize Phenology: Intercomparison of Functions for Developmental Response to Temperature. Agronomy Journal, 2014, 106, 2087-2097.	0.9	112
59	Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 2013, 3, 827-832.	8.1	1,021
60	Modelling climate change impact on Septoria tritici blotch (STB) in France: Accounting for climate model and disease model uncertainty. Agricultural and Forest Meteorology, 2013, 170, 242-252.	1.9	41
61	The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 2013, 170, 166-182.	1.9	715
62	An open platform to build, evaluate and simulate integrated models of farming and agro-ecosystems. Environmental Modelling and Software, 2013, 39, 39-49.	1.9	87
63	Assessing the Uncertainty when Using a Model to Compare Irrigation Strategies. Agronomy Journal, 2012, 104, 1274-1283.	0.9	39
64	Crop Model Calibration: A Statistical Perspective. Agronomy Journal, 2011, 103, 1144-1151.	0.9	55
65	Methodological comparison of calibration procedures for durum wheat parameters in the STICS model. European Journal of Agronomy, 2011, 35, 115-126.	1.9	39
66	Using a cropping system model at regional scale: Low-data approaches for crop management information and model calibration. Agriculture, Ecosystems and Environment, 2011, 142, 85-94.	2.5	90
67	A package of parameter estimation methods and implementation for the STICS crop-soil model. Environmental Modelling and Software, 2011, 26, 386-394.	1.9	53
68	A Component-Based Framework for Simulating Agricultural Production and Externalities. , 2010, , 63-108.		23
69	Spatialising Crop Models. , 2009, , 687-705.		7
70	A bayesian approach to crop Model calibration under unknown error covariance. Journal of Agricultural, Biological, and Environmental Statistics, 2008, 13, 355-365.	0.7	5
71	Adaptation of a functional model of grassland to simulate the behaviour of irrigated grasslands under a Mediterranean climate: The Crau case. European Journal of Agronomy, 2008, 29, 163-174.	1.9	10
72	ESTIMATING SOIL CARBON LEVELS USING AN ENSEMBLE KALMAN FILTER. Transactions of the American Society of Agricultural Engineers, 2004, 47, 331-339.	0.9	17

#	Article	IF	CITATIONS
73	Spatialising crop models. Agronomy for Sustainable Development, 2004, 24, 205-217.	0.8	78
74	Comparison of parameter estimation methods for crop models. Agronomy for Sustainable Development, 2004, 24, 351-365.	0.8	45
75	Evaluating optimal fertilizer rates using plant measurements. Journal of Applied Statistics, 2002, 29, 1083-1099.	0.6	1
76	Improving irrigation schedules by using a biophysical and a decisional model. European Journal of Agronomy, 2002, 16, 123-135.	1.9	43
77	It pays to base parameter estimation on a realistic description of model errors. Agronomy for Sustainable Development, 2002, 22, 179-189.	0.8	16
78	Parameter estimation in crop models: exploring the possibility of estimating linear combinations of parameters. Agronomy for Sustainable Development, 2002, 22, 171-178.	0.8	3
79	Optimal experimental designs for estimating model parameters, applied to yield response to nitrogen models. Agronomy for Sustainable Development, 2002, 22, 229-238.	0.8	8
80	The effect of parameter uncertainty on a model with adjusted parameters. Agronomy for Sustainable Development, 2002, 22, 159-170.	0.8	8
81	Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agronomy for Sustainable Development, 2002, 22, 191-203.	0.8	124
82	MODERATO: an object-oriented decision tool for designing maize irrigation schedules. Ecological Modelling, 2001, 137, 43-60.	1.2	69
83	Statistical Methods for Predicting Responses to Applied Nitrogen and Calculating Optimal Nitrogen Rates. Agronomy Journal, 2001, 93, 531-539.	0.9	27
84	Parameter Estimation for Crop Models. Agronomy Journal, 2001, 93, 757-766.	0.9	108
85	How to improve model-based decision rules for nitrogen fertilization. European Journal of Agronomy, 2001, 15, 197-208.	1.9	11
86	Evaluating Decision Rules for Nitrogen Fertilization. Biometrics, 2000, 56, 420-426.	0.8	6
87	Models of Yield, Grain Protein, and Residual Mineral Nitrogen Responses to Applied Nitrogen for Winter Wheat. Agronomy Journal, 1999, 91, 377-385.	0.9	62
88	Evaluation of CECOL, a model of winter rape (Brassica napus L.). European Journal of Agronomy, 1998, 8, 205-214.	1.9	11
89	Effect of uncertainty in input and parameter values on model prediction error. Ecological Modelling, 1998, 105, 337-345.	1.2	25
90	Optimise importance sampling quantile estimation. Biometrika, 1996, 83, 791-800.	1.3	8

#	Article	IF	CITATIONS
91	Regional Optimization of Fertilization Using a Hierarchical Linear Model. Biometrics, 1995, 51, 338.	0.8	10
92	Mean Squared Error of Yield Prediction by SOYGRO. Agronomy Journal, 1995, 87, 397-402.	0.9	11
93	Empirical Bayes optimal fertilizer decisions. Journal of Applied Statistics, 1995, 22, 507-516.	0.6	5
94	Shrinkage Estimators Applied to Prediction of French Winter Wheat Yield. Biometrics, 1993, 49, 281.	0.8	6
95	Prévision des livraisons de maÃ⁻s pour une coopérative agricole. Agronomy for Sustainable Development, 1992, 12, 631-637.	0.8	0
96	Utilisation de Donnees Intermediaires pour Corriger la Prediction de Modeles Mecanistes. Biometrics, 1991, 47, 1.	0.8	12
97	Modeling the Time Dependence of Nitrogen Uptake in Young Trees. Agronomy Journal, 1990, 82, 1135-1140.	0.9	6
98	Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecological Modelling, 1989, 44, 299-306.	1.2	231
99	The calculation of herbage intake of grazing sheep: A detailed comparison between models. Agricultural Systems, 1988, 26, 123-160.	3.2	19
100	AGROBASE : un systÃ me de gestion de données expérimentales. Agronomy for Sustainable Development, 1987, 7, 739-742.	0.8	1
101	Weight gain in grazing sheep: A detailed comparison between models. Agricultural Systems, 1986, 19, 211-248.	3.2	4
102	Maintenance energy requirements of grazing sheep: A detailed comparison between models. Agricultural Systems, 1984, 15, 1-22.	3.2	10
103	Effects of fruiting form removal on cotton reproductive development. Field Crops Research, 1982, 5, 69-84.	2.3	23
104	Prediction of Boll Opening in a Cotton Crop 1. Agronomy Journal, 1981, 73, 763-767.	0.9	1
105	An empirical mathematical model of a cotton crop subjected to damage. Field Crops Research, 1980, 3, 7-25.	2.3	10
106	Primary production of grazed annual natural pasture and of grazed wheat in a semi-arid region of Israel. Agricultural Systems, 1978, 3, 205-220.	3.2	6
107	The relation of cotton crop growth and development to final yield. Field Crops Research, 1978, 1, 283-294.	2.3	3
108	A simple model of cotton yield development. Field Crops Research, 1978, 1, 269-281.	2.3	8

#	Article	IF	CITATIONS
109	Environment-dependent logistic equations applied to natural pasture growth curves. Agricultural Meteorology, 1976, 16, 389-404.	0.7	8
110	The effect of environmental factors on the growth of a natural pasture. Agricultural Meteorology, 1975, 15, 231-244.	0.7	6
111	Nearâ€Resonant Electronic Energy Transfer from Argon to Hydrogen. Journal of Chemical Physics, 1972, 56, 3608-3618.	1.2	49
112	Interaction Potential between Ground State Helium Atom and theB1Σu+State of the Hydrogen Molecule. Journal of Chemical Physics, 1972, 56, 1219-1223.	1.2	30
113	Role of Spin Symmetry Conversion in Nuclear Relaxation in Solids. Journal of Chemical Physics, 1971, 54, 4044-4049.	1.2	20
114	Nuclear Relaxation in Solids due to Molecular Rotation at Low Temperatures. Journal of Chemical Physics, 1970, 52, 2534-2538.	1.2	14
115	Anisotropic Molecular Rotation in Liquid N,Nâ€Dimethylformamide by Nuclear Magnetic Resonance. Journal of Chemical Physics, 1969, 50, 1219-1227.	1.2	100
116	Effect of fast internal rotation on the nitrogen-14 nuclear magnetic resonance relaxation times of the methylbenzyl cyanides. The Journal of Physical Chemistry, 1969, 73, 307-312.	2.9	19
117	Effect of Internal Rotation on Angular Correlation Functions. Journal of Chemical Physics, 1967, 47, 5258-5268.	1.2	342
118	Providing User-Oriented Uncertainty Information with a Vineyard Model Used for Irrigation Decisions. Advances in Agricultural Systems Modeling, 0, , 183-207.	0.3	2