List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8856665/publications.pdf Version: 2024-02-01

SOSHI SHIDAISHI

#	Article	IF	CITATIONS
1	Development of Novel Carbon Electrode for Electrochemical Energy Storage. Nano-sized Carbon and Classic Carbon Electrodes for Capacitors. Electrochemistry, 2021, 89, 491-499.	0.6	5
2	Regeneration of Fully-discharged Graphite-Fluoride Lithium Primary Battery as Electrochemical Capacitor. Electrochemistry, 2021, 89, 87-93.	0.6	5
3	A high-energy density hybrid capacitor derived from a graphite-oxide lithium primary battery. Tanso, 2021, 2021, 76-79.	0.1	1
4	High-Capacity Hard Carbon Synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 135-140.	2.5	113
5	Nitrogen Doped Superactivated Carbons Prepared at Mild Conditions as Electrodes for Supercapacitors in Organic Electrolyte. Journal of Carbon Research, 2020, 6, 56.	1.4	3
6	Effect of the thickness of single-walled carbon nanotube electrodes on the discharge properties of Li–air batteries. Journal of Electroanalytical Chemistry, 2020, 878, 114603.	1.9	9
7	Thermal Pore Stability of Activated Carbon Materials to Heat Treatment above 1000°C and Lithium-ion Capacitors Using Heated Silicon-carbide-derived Carbon. Electrochemistry, 2020, 88, 57-59.	0.6	1
8	Structural Analysis of Sucrose-Derived Hard Carbon and Correlation with the Electrochemical Properties for Lithium, Sodium, and Potassium Insertion. Chemistry of Materials, 2020, 32, 2961-2977.	3.2	150
9	Nitrogen-Doped Seamless Activated Carbon Electrode with Excellent Durability for Electric Double Layer Capacitor. Journal of the Electrochemical Society, 2020, 167, 060523.	1.3	17
10	Capacitance Properties and Durability of Various Single-Walled Carbon Nanotube Electrodes for Electric Double Layer Capacitor. Electrochemistry, 2020, 88, 369-373.	0.6	3
11	Capacitance and electrochemical stability of activated carbon electrodes in sulfone electrolytes for electric double layer capacitors. Tanso, 2019, 2019, 128-134.	0.1	2
12	Capacitance properties of activated Ketjenblack as an electrode active-material for an electric double layer capacitor. Tanso, 2019, 2019, 139-147.	0.1	3
13	Durability evaluation method of activated carbon electrode for electric double layer capacitor. Tanso, 2019, 2019, 154-158.	0.1	5
14	Electrode Carbon Material for Electric Double Layer Capacitors. Vacuum and Surface Science, 2019, 62, 703-708.	0.0	2
15	A carbon electrode prepared by defluorination for use in an electrochemical capacitor. Carbon, 2016, 107, 933.	5.4	1
16	Electrochemical Performance. , 2016, , 205-226.		3
17	A carbon electrode prepared by defluorination for use in an electrochemical capacitor. Tanso, 2016, 2016, 75-82.	0.1	2
18	Application of Carbon Materials Derived from Fluorocarbons in an Electrochemical Capacitor. , 2015, , 415-430.		3

#	Article	IF	CITATIONS
19	Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions. Carbon, 2015, 82, 205-213.	5.4	66
20	Carbon–carbon asymmetric aqueous capacitor by pseudocapacitive positive and stable negative electrodes. Carbon, 2014, 67, 792-794.	5.4	23
21	Activated Carbons. , 2014, , 1-7.		2
22	Characterization of Carbon Microstructure by Electrochemical Oxidation. Electrochemistry, 2010, 78, 517-522.	0.6	4
23	Electrochemical reaction of fructose dehydrogenase on carbon cryogel electrodes with controlled pore sizes. Electrochemistry Communications, 2010, 12, 446-449.	2.3	74
24	Measuring cycle efficiency and capacitance of chemically activated carbons in propylene carbonate. Carbon, 2010, 48, 1451-1456.	5.4	40
25	Synthesis and properties of 5,10,15,20-tetrakis[4-(alkoxysilyl)phenyl]porphyrins: an application of selective deprotection of benzaldehyde diethyl acetals in the presence of alkoxysilyl groups. Dalton Transactions, 2010, 39, 9421.	1.6	3
26	Nitrogenâ€Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance. Advanced Functional Materials, 2009, 19, 1800-1809.	7.8	720
27	Electromechanical behavior of a fully plastic actuator based on dispersed nano-carbon/ionic-liquid-gel electrodes. Carbon, 2009, 47, 1373-1380.	5.4	81
28	Influence of heating duration on high-voltage charging durability of an activated carbon electrode for electric double layer capacitors. Tanso, 2009, 2009, 226-229.	0.1	0
29	Preparation of Silicon Carbide-based Nanoporous Materials by Replica Technique. Chemistry Letters, 2008, 37, 574-575.	0.7	14
30	Polyion Complex Nanocomposite Electrode Incorporating Enzyme and Carbon Nanotube for Biofuel Cells. Electrochemistry, 2008, 76, 55-58.	0.6	19
31	Optimization of Enzyme Anode and Cathode with Polyion Complex for the Application to Biofuel Cells. Electrochemistry, 2008, 76, 619-624.	0.6	16
32	電溗化å¦ā,ャパã,•ã,¿ã®æ,¬å®š. Electrochemistry, 2008, 76, 74-79.	0.6	2
33	Electrochemical capacitance of carbonized polyaniline. Tanso, 2008, 2008, 61-66.	0.1	10
34	Preparation of nanoporous carbons by defluorination. Tanso, 2008, 2008, 92-97.	0.1	1
35	Electric Double Layer Capacitance of Activated Carbon Nanofibers in Ionic Liquid: EMImBF4. Electrochemistry, 2007, 75, 619-621.	0.6	23
36	Characterization of activated carbons for electric double layer capacitor and its attention. Tanso, 2007, 2007, 195-199.	0.1	10

#	Article	IF	CITATIONS
37	Dependence of electric double layer capacitance on electrolyte ion for carbon electrolyte interface. Tanso, 2007, 2007, 237-241.	0.1	5
38	Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect. Applied Physics A: Materials Science and Processing, 2006, 82, 585-591.	1.1	110
39	Electrochemical Lithium Ion Doping and Undoping Behavior of Carbyne-like Carbon Film Electrode. Chemistry Letters, 2005, 34, 1678-1679.	0.7	9
40	Electric Double Layer Capacitance of Activated Carbon Fibers in Ionic Liquid : EMImBF ₄ . Electrochemistry, 2005, 73, 593-596.	0.6	25
41	Raman spectral change during electrochemical lithium-ion doping/dedoping for carbon nanofiber prepared by polymer blend spinning technique. Tanso, 2005, 2005, 283-285.	0.1	0
42	Influence of organics adsorption on electric double layer capacitance for activated carbon electrode. Tanso, 2004, 2004, 255-257.	0.1	5
43	Preparation of porous carbon by defluorination of PTFE and its application to electric double layer capacitor. Tanso, 2004, 2004, 285-294.	0.1	13
44	Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000 °C. Carbon, 2004, 42, 667-669.	5.4	78
45	Pyrolytically prepared carbon from fluorine–GIC. Carbon, 2003, 41, 1149-1156.	5.4	10
46	Heterogeneous graphitization of thin carbon fiber derived from phenol–formaldehyde resin. Carbon, 2003, 41, 1654-1656.	5.4	31
47	Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon, 2003, 41, 1765-1775.	5.4	414
48	Preparation and pore control of highly mesoporous carbon from defluorinated PTFE. Carbon, 2003, 41, 1759-1764.	5.4	77
49	Direct conversion mechanism of fluorine–GIC into poly(carbon monofluoride), (CF). Carbon, 2003, 41, 1971-1977.	5.4	22
50	Application of Thin Carbon Fibers Prepared by Polymer-Blend Technique for Lithium-Ion Battery Negative Electrode. Electrochemistry, 2003, 71, 1157-1159.	0.6	4
51	Electric Double Layer Capacitors. , 2003, , 447-457.		10
52	Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF[sub 3]SO[sub 3], Li(CF[sub 3]SO[sub 2])[sub 2]N, or Li(C[sub 4]F[sub 9]SO[sub) Tj ETQq	O O1O3rgBT	/Owerlock 10
53	Preparation and Characterization of Porous Carbons By Defluorination of Ptfe with Alkali Metals - Effect of Alkali Metals on the Porous Structure Molecular Crystals and Liquid Crystals, 2002, 388, 45-50.	0.4	10

54Double Layer Capacitance Of Porous Carbons Derived From Defluorination Of Ptfe. Molecular0.41054Crystals and Liquid Crystals, 2002, 388, 129-135.0.410

#	Article	IF	CITATIONS
55	Electric Double-Layer Capacitance of Meso/Macroporous Activated Carbon Fibers Prepared by the Blending Method. Journal of the Electrochemical Society, 2002, 149, A855.	1.3	94
56	Electric Double Layer Capacitance Performance of Porous Carbons Prepared by Defluorination of Polytetrafluoroethylene with Potassium. Electrochemical and Solid-State Letters, 2002, 5, A283.	2.2	27
57	Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPcoâ"¢Buckytubesâ"¢) in propylene carbonate electrolytes. Electrochemistry Communications, 2002, 4, 593-598.	2.3	192
58	Mesoporous carbon from poly(tetrafluoroethylene) defluorinated by sodium metal. Carbon, 2002, 40, 457-459.	5.4	29
59	Preparation of Porous Carbon from Lithium Acetylide. Tanso, 2002, 2002, 266-269.	0.1	0
60	Electric Double Layer Capacitance of Highly Porous Carbon Derived from Lithium Metal and Polytetrafluoroethylene. Electrochemical and Solid-State Letters, 2001, 4, A5.	2.2	104
61	Preparation of Porous Carbon by Defluorination of Poly(tetrafluoroethylene) and the Effect of Î ³ -Irradiation on the Polymer. Chemistry of Materials, 2001, 13, 2933-2939.	3.2	31
62	Imaging for Uniformity of Lithium Metal Surface Using Tapping Mode-Atomic Force and Surface Potential Microscopy. Journal of Physical Chemistry B, 2001, 105, 123-134.	1.2	30
63	Electric Double Layer Capacitance of Mesoporous Activated Carbon Fiber. Electrochemistry, 2001, 69, 440-443.	0.6	34
64	Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO2 thin film electrode for lithium batteries. Electrochimica Acta, 2001, 47, 433-439.	2.6	70
65	実朖™ã®ãã®å´é›»æ°—化å¦ã€€åŽŸå間力é;•å¾®éţ観å⁻Ÿ(ãfªãfẽ,¦ãfé‡'å±žã®æº¶è§£ãf»æžå‡ºå応).∣	Ele otr oche	mi s try, 2001,
66	Quartz Crystal Microbalance Study of Lithium Deposition and Dissolution in Nonaqueous Electrolyte with Hydrofluoric Acid. Journal of the Electrochemical Society, 2000, 147, 2070.	1.3	12
67	Evaluation Method for Electrochemical Properties of Carbon. Tanso, 2000, 2000, 304-307.	0.1	3
68	Preparation of Porous Carbon with Defluorination of PTFE by Radical Anion. Tanso, 2000, 2000, 395-399.	0.1	11
69	Evaluation Method for Electrochemical Properties of Carbon. Tanso, 2000, 2000, 223-227.	0.1	1
70	Electrochemical Carbonization of PTFE in Nonaqueous Electrolytes. Tanso, 1999, 1999, 88-95.	0.1	2
71	Influence of initial surface condition of lithium metal anodes on surface modification with HF. Journal of Applied Electrochemistry, 1999, 29, 867-879.	1.5	67
72	Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolutionâ€Deposition Cycles. Journal of the Electrochemical Society, 1999, 146, 1633-1639.	1.3	161

#	Article	IF	CITATIONS
73	Quartz Crystal Microbalance Study for Lithium Deposition and Dissolution in Nonaqueous Electrolyte with HF. Electrochemistry, 1999, 67, 1264-1267.	0.6	4
74	Electrochemical deposition of lithium metal in nonaqueous electrolyte containing (C2H5)4NF(HF)4 additive. Journal of Fluorine Chemistry, 1998, 87, 235-243.	0.9	35
75	The Observation of Electrochemical Dissolution of Lithium Metal Using Electrochemical Quartz Crystal Microbalance and in-Situ Tapping Mode Atomic Force Microscopy. Langmuir, 1998, 14, 7082-7086.	1.6	17
76	Dynamic Observation of Surface Reactions of Lithium Foils Immersed in Diethyl Carbonate Electrolytes by Using in situ FTIR Measurement. Electrochemistry, 1998, 66, 272-278.	0.3	1
77	Study on Dynamic Behavior of Diethyl Carbonate Electrolyte on Lithium Metal Surface UsingIn SituFTIR Spectroscopy. Chemistry Letters, 1997, 26, 41-42.	0.7	1
78	Chemical Reaction of Lithium Surface during Immersion in LiClO4 or LiPF6 /  DEC  Electrolyte. Ja the Electrochemical Society, 1997, 144, 1900-1906.	ournal of	110
79	Study of the Surface Composition of Highly Smooth Lithium Deposited in Various Carbonate Electrolytes Containing HF. Langmuir, 1997, 13, 3542-3549.	1.6	90
80	XPS Analysis of the Surface of a Carbon Electrode Intercalated by Lithium Ions. Chemistry of Materials, 1997, 9, 1797-1804.	3.2	73
81	Membrane knobs of unfixed Babesia bovis-infected erythrocytes: new findings as revealed by atomic force microscopy and surface potential spectroscopy. Parasitology International, 1997, 46, 241-246.	0.6	9
82	Electrochemical Deposition of Very Smooth Lithium Using Nonaqueous Electrolytes Containing HF. Journal of the Electrochemical Society, 1996, 143, 2187-2197.	1.3	212
83	Membrane Knobs of UnfixedPlasmodium falciparumInfected Erythrocytes: New Findings as Revealed by Atomic Force Microscopy and Surface Potential Spectroscopy. Experimental Parasitology, 1996, 84, 339-343.	0.5	49
84	Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO2 thin film electrode. Journal of Electroanalytical Chemistry, 1996, 419, 77-84.	1.9	89
85	Electrochemical Oxidation Processes on Ni Electrodes in Propylene Carbonate Containing Various Electrolyte Salts. Journal of the Electrochemical Society, 1996, 143, 2548-2558.	1.3	39
86	Morphology Control of Lithium Deposited in Nonaqueous Media. Chemistry Letters, 1995, 24, 209-210.	0.7	17
87	XPS analysis for the lithium surface immersed in Î ³ -butyrolactone containing various salts. Electrochimica Acta, 1995, 40, 913-921.	2.6	90
88	Effect of surface modification using various acids on electrodeposition of lithium. Journal of Applied Electrochemistry, 1995, 25, 584-591.	1.5	49
89	Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes. Journal of Electroanalytical Chemistry, 1995, 394, 49-62.	1.9	145
90	Studies on Electrochemical Oxidation of Nonaqueous Electrolytes Using In Situ FTIR Spectroscopy: I . The Effect of Type of Electrode on On‣et Potential for Electrochemical Oxidation of Propylene Carbonate Containing 1.0 mol dmâ~'3. Journal of the Electrochemical Society, 1995, 142, 1383-1389.	1.3	71

#	Article	IF	CITATIONS
91	XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4. Journal of the Electrochemical Society, 1995, 142, 340-347.	1.3	233
92	Electrochemical Deposition of Uniform Lithium on an Ni Substrate in a Nonaqueous Electrolyte. Journal of the Electrochemical Society, 1994, 141, L108-L110.	1.3	95
93	Xâ€Ray Photoelectron Spectroscopic Analysis and Scanning Electron Microscopic Observation of the Lithium Surface Immersed in Nonaqueous Solvents. Journal of the Electrochemical Society, 1994, 141, 2379-2385.	1.3	121
94	XPS Analysis for Lithium Surface Immersed in Tetrahydrofuran Containing Various Salts. Electrochemistry, 1993, 61, 1377-1382.	0.3	7
95	Heat-Treatment and Nitrogen-Doping of Activated Carbons for High Voltage Operation of Electric Double Layer Capacitor. Key Engineering Materials, 0, 497, 80-86.	0.4	33