
Huining Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8856451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. International Journal of Molecular Sciences, 2015, 16, 3626-3655.	4.1	434
2	Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: In situ FTIR analysis for structure-activity correlation. Applied Catalysis B: Environmental, 2017, 200, 297-308.	20.2	388
3	Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. Journal of Bioresources and Bioproducts, 2020, 5, 1-15.	20.5	304
4	Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresource Technology, 2017, 241, 482-490.	9.6	265
5	Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis) Tj ETQq1 1 0.7	784314 rg 8.2	BT /Qverloc
6	Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydrate Polymers, 2014, 111, 442-448.	10.2	220
7	Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2018, 236, 396-403.	20.2	218
8	Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules, 2020, 21, 2983-3006.	5.4	207
9	Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 2017, 9, 14758-14781.	5.6	198
10	A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydrate Polymers, 2020, 250, 116905.	10.2	184
11	Black NiO-TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism. Applied Catalysis B: Environmental, 2018, 224, 705-714.	20.2	177
12	Fabrication of superhydrophobic paper surface via wax mixture coating. Chemical Engineering Journal, 2014, 250, 431-436.	12.7	156
13	Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polymer Degradation and Stability, 2015, 116, 14-22.	5.8	145
14	Drug carrier systems based on water-soluble cationic β-cyclodextrin polymers. International Journal of Pharmaceutics, 2004, 278, 329-342.	5.2	129
15	Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 50281-50297.	8.0	125
16	Nanocellulose-based lightweight porous materials: A review. Carbohydrate Polymers, 2021, 255, 117489.	10.2	118
17	Highly Dispersed NiCo ₂ O ₄ Nanodots Decorated Three-Dimensional g-C ₃ N ₄ for Enhanced Photocatalytic H ₂ Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 12428-12438.	6.7	115
18	Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application. Journal of Colloid and Interface Science, 2021, 597, 171-181.	9.4	114

#	Article	IF	CITATIONS
19	Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chemistry, 2021, 337, 127750.	8.2	110
20	Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 197, 225-234.	4.7	109
21	Modified guanidine polymers: Synthesis and antimicrobial mechanism revealed by AFM. Polymer, 2008, 49, 2471-2475.	3.8	105
22	Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydrate Polymers, 2020, 229, 115454.	10.2	103
23	Quaternary Ammonium β-Cyclodextrin Nanoparticles for Enhancing Doxorubicin Permeability across the In Vitro Bloodâ^'Brain Barrier. Biomacromolecules, 2009, 10, 505-516.	5.4	98
24	Antimicrobial/Biocompatible Hydrogels Dual-Reinforced by Cellulose as Ultrastretchable and Rapid Self-Healing Wound Dressing. Biomacromolecules, 2021, 22, 1654-1663.	5.4	94
25	Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel. Cellulose, 2021, 28, 4295-4311.	4.9	92
26	Synthesis of Modified Guanidine-Based Polymers and their Antimicrobial Activities Revealed by AFM and CLSM. ACS Applied Materials & Interfaces, 2011, 3, 1895-1901.	8.0	89
27	Novel Composite Adsorbent Consisting of Dissolved Cellulose Fiber/Microfibrillated Cellulose for Dye Removal from Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2018, 6, 6994-7002.	6.7	85
28	Facile synthesis of tube-shaped Mn-Ni-Ti solid solution and preferable Langmuir-Hinshelwood mechanism for selective catalytic reduction of NO by NH3. Applied Catalysis A: General, 2018, 549, 289-301.	4.3	83
29	Synergistic effects of chitosan–guanidine complexes on enhancing antimicrobial activity and wet-strength of paper. Bioresource Technology, 2010, 101, 5693-5700.	9.6	82
30	Self-Healable Electro-Conductive Hydrogels Based on Core-Shell Structured Nanocellulose/Carbon Nanotubes Hybrids for Use as Flexible Supercapacitors. Nanomaterials, 2020, 10, 112.	4.1	80
31	Antimicrobial-modified sulfite pulps prepared by in situ copolymerization. Carbohydrate Polymers, 2007, 69, 688-696.	10.2	74
32	Development of Lignin and Nanocellulose Enhanced Bio PU Foams for Automotive Parts. Journal of Polymers and the Environment, 2014, 22, 279-288.	5.0	74
33	A Skin-Inspired Stretchable, Self-Healing and Electro-Conductive Hydrogel with a Synergistic Triple Network for Wearable Strain Sensors Applied in Human-Motion Detection. Nanomaterials, 2019, 9, 1737.	4.1	74
34	Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 59142-59153.	8.0	70
35	Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydrate Polymers, 2013, 94, 749-754.	10.2	68
36	Thermally conductive, super flexible and flame-retardant BN-OH/PVA composite film reinforced by lignin nanoparticles. Journal of Materials Chemistry C, 2019, 7, 14159-14169.	5.5	66

#	Article	IF	CITATIONS
37	Biological Activities and Emerging Roles of Lignin and Lignin-Based Products─A Review. Biomacromolecules, 2021, 22, 4905-4918.	5.4	65
38	Preparation of novel antimicrobial-modified starch and its adsorption on cellulose fibers: Part I. Optimization of synthetic conditions and antimicrobial activities. Cellulose, 2008, 15, 609-618.	4.9	63
39	N-doped porous carbon nanofibers fabricated by bacterial cellulose-directed templating growth of MOF crystals for efficient oxygen reduction reaction and sodium-ion storage. Carbon, 2020, 168, 12-21.	10.3	63
40	Temperature and pH responsive cellulose filament/poly (NIPAM-co-AAc) hybrids as novel adsorbent towards Pb(II) removal. Carbohydrate Polymers, 2018, 195, 495-504.	10.2	62
41	Functionalized porous magnetic cellulose/Fe3O4 beads prepared from ionic liquid for removal of dyes from aqueous solution. International Journal of Biological Macromolecules, 2020, 163, 309-316.	7.5	61
42	21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery. Carbohydrate Polymers, 2010, 79, 277-283.	10.2	60
43	Absorbents based on maleic anhydride-modified cellulose fibers/diatomite for dye removal. Journal of Materials Science, 2014, 49, 6696-6704.	3.7	59
44	Synthesis and antimicrobial characterization of novel l-lysine gemini surfactants pended with reactive groups. Tetrahedron Letters, 2008, 49, 1759-1761.	1.4	58
45	Amino-functionalized alkaline clay with cationic star-shaped polymer as adsorbents for removal of Cr(VI) in aqueous solution. Applied Surface Science, 2016, 385, 333-340.	6.1	58
46	Preparation and characterization of inclusion complexes of a cationic Î ² -cyclodextrin polymer with butylparaben or triclosan. International Journal of Pharmaceutics, 2008, 357, 244-251.	5.2	57
47	Adsorption of Hg (II) ions from aqueous solution by diethylenetriaminepentaacetic acid-modified cellulose. International Journal of Biological Macromolecules, 2019, 122, 149-156.	7.5	57
48	Inhibiting Mercury Re-emission and Enhancing Magnesia Recovery by Cobalt-Loaded Carbon Nanotubes in a Novel Magnesia Desulfurization Process. Environmental Science & Technology, 2017, 51, 11346-11353.	10.0	55
49	Controlled Release of Agrochemicals Using pH and Redox Dual-Responsive Cellulose Nanogels. Journal of Agricultural and Food Chemistry, 2019, 67, 6700-6707.	5.2	55
50	Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose, 2009, 16, 309-317.	4.9	54
51	Tailorâ€Made Antimicrobial/Antiviral Star Polymer via ATRP of Cyclodextrin and Guanidineâ€Based Macromonomer. Macromolecular Chemistry and Physics, 2015, 216, 511-518.	2.2	54
52	Bioinspired self-assembled films of carboxymethyl cellulose–dopamine/montmorillonite. Journal of Materials Chemistry A, 2019, 7, 14033-14041.	10.3	54
53	Redox-responsive carboxymethyl cellulose hydrogel for adsorption and controlled release of dye. European Polymer Journal, 2020, 123, 109447.	5.4	54
54	Controlled release of agrochemicals and heavy metal ion capture dual-functional redox-responsive hydrogel for soil remediation. Chemical Communications, 2018, 54, 13714-13717.	4.1	52

#	Article	IF	CITATIONS
55	Thermal and pH dual-responsive cellulose microfilament spheres for dye removal in single and binary systems. Journal of Hazardous Materials, 2019, 377, 88-97.	12.4	51
56	Novel cellulose/montmorillonite mesoporous composite beads for dye removal in single and binary systems. Bioresource Technology, 2019, 286, 121366.	9.6	51
57	Polycyclodextrins: Synthesis, functionalization, and applications. Carbohydrate Polymers, 2020, 242, 116277.	10.2	51
58	Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging. Carbohydrate Polymers, 2014, 111, 524-529.	10.2	48
59	Hydrophobic modification of bagasse cellulose fibers with cationic latex: Adsorption kinetics and mechanism. Chemical Engineering Journal, 2016, 302, 33-43.	12.7	47
60	Uniform dispersion of cobalt nanoparticles over nonporous TiO2 with low activation energy for magnesium sulfate recovery in a novel magnesia-based desulfurization process. Journal of Hazardous Materials, 2018, 342, 579-588.	12.4	47
61	Cationic Polymers with Tailored Structures for Rendering Polysaccharide-Based Materials Antimicrobial: An Overview. Polymers, 2019, 11, 1283.	4.5	47
62	Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydrate Polymers, 2021, 255, 117431.	10.2	46
63	Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. Journal of Hazardous Materials, 2022, 424, 127391.	12.4	46
64	Dual-responsive IPN hydrogel based on sugarcane bagasse cellulose as drug carrier. International Journal of Biological Macromolecules, 2018, 118, 132-140.	7.5	45
65	Non-leaching antimicrobial biodegradable PBAT films through a facile and novel approach. Materials Science and Engineering C, 2016, 58, 986-991.	7.3	43
66	Water-resistant cellulosic filter containing non-leaching antimicrobial starch for water purification and disinfection. Carbohydrate Polymers, 2017, 163, 146-152.	10.2	42
67	Starch-Based Flexible Coating for Food Packaging Paper with Exceptional Hydrophobicity and Antimicrobial Activity. Polymers, 2018, 10, 1260.	4.5	41
68	Functional-modified polyurethanes for rendering surfaces antimicrobial: An overview. Advances in Colloid and Interface Science, 2020, 283, 102235.	14.7	41
69	Engineering a ratiometric fluorescent sensor membrane containing carbon dots for efficient fluoride detection and removal. Chemical Engineering Journal, 2020, 399, 125741.	12.7	41
70	Characteristics of CO ₂ adsorption on biochar derived from biomass pyrolysis in molten salt. Canadian Journal of Chemical Engineering, 2018, 96, 2352-2360.	1.7	40
71	ZnO nanoparticles enhanced hydrophobicity for starch film and paper. Materials Letters, 2018, 230, 207-210.	2.6	40
72	Construction of three-dimensional g-C3N4/attapulgite hybrids for Cd(II) adsorption and the reutilization of waste adsorbent. Applied Surface Science, 2020, 504, 144456.	6.1	40

#	Article	IF	CITATIONS
73	Dye removal from single and binary systems using gel-like bioadsorbent based on functional-modified cellulose. Cellulose, 2018, 25, 2559-2575.	4.9	39
74	Magnetic Fe3O4/attapulgite hybrids for Cd(II) adsorption: Performance, mechanism and recovery. Journal of Hazardous Materials, 2021, 412, 125237.	12.4	39
75	Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. Cellulose, 2019, 26, 933-944.	4.9	38
76	Recent advances on the bacterial cellulose-derived carbon aerogels. Journal of Materials Chemistry C, 2021, 9, 818-828.	5.5	38
77	Thiomers of Chitosan and Cellulose: Effective Biosorbents for Detection, Removal and Recovery of Metal Ions from Aqueous Medium. Chemical Record, 2021, 21, 1876-1896.	5.8	38
78	Clay flocculation improved by cationic poly(vinyl alcohol)/anionic polymer dual-component system. Journal of Colloid and Interface Science, 2008, 326, 420-425.	9.4	37
79	Dual-Functional Beeswaxes on Enhancing Antimicrobial Activity and Water Vapor Barrier Property of Paper. ACS Applied Materials & Interfaces, 2013, 5, 3464-3468.	8.0	36
80	Fluorescence-sensitive adsorbent based on cellulose using for mercury detection and removal from aqueous solution with selective "on-off―response. International Journal of Biological Macromolecules, 2019, 132, 1185-1192.	7.5	36
81	Synthesis and antibacterial characterization of gemini surfactant monomers and copolymers. Polymer Chemistry, 2012, 3, 907.	3.9	35
82	Selfâ€healing Polyol/Borax Hydrogels: Fabrications, Properties and Applications. Chemical Record, 2020, 20, 1142-1162.	5.8	35
83	Dual-responsive carboxymethyl cellulose/dopamine/cystamine hydrogels driven by dynamic metal-ligand and redox linkages for controllable release of agrochemical. Carbohydrate Polymers, 2021, 253, 117188.	10.2	35
84	Synergically Improving Light Harvesting and Charge Transportation of TiO2 Nanobelts by Deposition of MoS2 for Enhanced Photocatalytic Removal of Cr(VI). Catalysts, 2017, 7, 30.	3.5	34
85	A green and robust solid catalyst facilitating the magnesium sulfite oxidation in the magnesia desulfurization process. Journal of Materials Chemistry A, 2017, 5, 8018-8028.	10.3	33
86	Porous cellulose beads reconstituted from ionic liquid for adsorption of heavy metal ions from aqueous solutions. Cellulose, 2019, 26, 9163-9178.	4.9	32
87	Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polymer Chemistry, 2020, 11, 4355-4381.	3.9	32
88	Benzenesulfonic acid-based hydrotropic system for achieving lignocellulose separation and utilization under mild conditions. Bioresource Technology, 2021, 337, 125379.	9.6	32
89	Highly-efficient nitrogen self-doped biochar for versatile dyes' removal prepared from soybean cake via a simple dual-templating approach and associated thermodynamics. Journal of Cleaner Production, 2022, 332, 130069.	9.3	32
90	Cellulose fibers modified with nano-sized antimicrobial polymer latex for pathogen deactivation. Carbohydrate Polymers, 2016, 135, 94-100.	10.2	31

#	Article	IF	CITATIONS
91	Synthesis of a novel antimicrobial-modified starch and its adsorption on cellulose fibers: part Il––adsorption behaviors of cationic starch on cellulose fibers. Cellulose, 2008, 15, 619-629.	4.9	30
92	Novel multi-responsive and sugarcane bagasse cellulose-based nanogels for controllable release of doxorubicin hydrochloride. Materials Science and Engineering C, 2021, 118, 111357.	7.3	30
93	A ratiometric fluorescent hydrogel of controlled thickness prepared continuously using microtomy for the detection and removal of Hg(II). Chemical Engineering Journal, 2021, 426, 131296.	12.7	29
94	Co-site substitution by Mn supported on biomass-derived active carbon for enhancing magnesia desulfurization. Journal of Hazardous Materials, 2019, 365, 531-537.	12.4	28
95	Degradable polyprodrugs: design and therapeutic efficiency. Chemical Society Reviews, 2022, 51, 6652-6703.	38.1	28
96	Synthesis, characterization and antimicrobial activities of water-soluble amphiphilic copolymers containing ciprofloxacin and quaternary ammonium salts. Journal of Materials Chemistry B, 2015, 3, 3704-3713.	5.8	27
97	Adsorption Characteristics of Carbon Dioxide Gas on a Solid Acid Derivative of β-Cyclodextrin. Energy & Fuels, 2017, 31, 4186-4192.	5.1	27
98	Volumetric Mass Transfer Coefficient of Oxygen in An Internal Loop Airlift Reactor with a Convergence-Divergence Draft Tube. Chemical Engineering and Technology, 2000, 23, 597-603.	1.5	26
99	Synergy of wet strength and antimicrobial activity of cellulose paper induced by a novel polymer complex. Materials Letters, 2008, 62, 3610-3612.	2.6	26
100	Synthesis and Characterization of Ciprofloxacin Pendant Antibacterial Cationic Polymers. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1115-1128.	3.5	26
101	Synthesis and Characterization of Antimicrobial Polyvinyl Pyrrolidone Hydrogel as Wound Dressing. Soft Materials, 2014, 12, 179-187.	1.7	26
102	Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic. Journal of Advanced Research, 2022, 39, 147-156.	9.5	26
103	Novel Antiâ€Microbial Hostâ€Guest Complexes Based on Cationic <i>β</i> â€Cyclodextrin Polymers and Triclosan/Butylparaben. Macromolecular Rapid Communications, 2007, 28, 2244-2248.	3.9	25
104	Cellulase-assisted refining of bleached softwood kraft pulp for making water vapor barrier and grease-resistant paper. Cellulose, 2016, 23, 891-900.	4.9	25
105	"Cellulose Spacer―Strategy: Anti-Aggregation-Caused Quenching Membrane for Mercury Ion Detection and Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 15182-15189.	6.7	25
106	Thermally Conductive and Electrical Insulation BNNS/CNF Aerogel Nano-Paper. Polymers, 2019, 11, 660.	4.5	24
107	Antibacterial activities and mechanisms of fluorinated graphene and guanidine-modified graphene. RSC Advances, 2016, 6, 8763-8772.	3.6	23
108	Green and Superhydrophobic Coatings Based on Tailor-Modified Lignocellulose Nanofibrils for Self-Cleaning Surfaces. Industrial & Engineering Chemistry Research, 2019, 58, 20323-20330.	3.7	23

#	Article	IF	CITATIONS
109	Binding affinity of family 4 carbohydrate binding module on cellulose films of nanocrystals and nanofibrils. Carbohydrate Polymers, 2021, 251, 116725.	10.2	23
110	Starch-Based Composite Films with Enhanced Hydrophobicity, Thermal Stability, and UV-Shielding Efficacy Induced by Lignin Nanoparticles. Biomacromolecules, 2022, 23, 829-838.	5.4	23
111	Preparation and Properties of Nonleaching Antimicrobial Linear Low-Density Polyethylene Films. Industrial & Engineering Chemistry Research, 2015, 54, 1824-1831.	3.7	22
112	The effect of ceria nanoparticles on improving heat resistant properties of fluorosilicone rubber. Journal of Applied Polymer Science, 2016, 133, .	2.6	22
113	Layerâ€byâ€Layer Assembly for Surface Tethering of Thinâ€Hydrogel Films: Design Strategies and Applications. Chemical Record, 2020, 20, 857-881.	5.8	22
114	Lignocellulosic nanofibril aerogel via gas phase coagulation and diisocyanate modification for solvent absorption. Carbohydrate Polymers, 2022, 278, 119011.	10.2	22
115	Hydrothermal synthesis of nitrogen-doped ordered mesoporous carbon <i>via</i> lysine-assisted self-assembly for efficient CO ₂ capture. RSC Advances, 2020, 10, 2932-2941.	3.6	21
116	Design and Construction of Fluorescent Cellulose Nanocrystals for Biomedical Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	21
117	Adsorption of methyl violet using pH- and temperature-sensitive cellulose filament/poly(NIPAM-co-AAc) hybrid hydrogels. Journal of Materials Science, 2018, 53, 11837-11854.	3.7	20
118	Glyoxal improved functionalization of starch with AZC enhances the hydrophobicity, strength and UV blocking capacities of co-crosslinked polymer. European Polymer Journal, 2019, 110, 385-393.	5.4	20
119	Fluorescent paper-based analytical devices for ultra-sensitive dual-type RNA detections and accurate gastric cancer screening. Biosensors and Bioelectronics, 2022, 197, 113781.	10.1	20
120	Remediation of Cd (II) ions in aqueous and soil phases using novel porous cellulose/chitosan composite spheres loaded with zero-valent iron nanoparticles. Reactive and Functional Polymers, 2022, 173, 105210.	4.1	20
121	Effective syntheses of per-2,3-di- and per-3-O-chloroacetyl-β-cyclodextrins: A new kind of ATRP initiators for star polymers. Tetrahedron Letters, 2010, 51, 2351-2353.	1.4	19
122	Poly lactic acid nanocomposites containing modified nanoclay with synergistic barrier to water vapor for coated paper. Journal of Applied Polymer Science, 2014, 131, .	2.6	19
123	Cellulose/nanoclay composite films with high water vapor resistance and mechanical strength. Cellulose, 2015, 22, 3941-3953.	4.9	19
124	An Aminosalicylic Acidâ€Modified Cellulose Composite Used for Mercury (II) Removal from Single and Quarternary Aqueous Solutions. ChemistrySelect, 2018, 3, 10096-10102.	1.5	19
125	Aerogel Perfusion-Prepared h-BN/CNF Composite Film with Multiple Thermally Conductive Pathways and High Thermal Conductivity. Nanomaterials, 2019, 9, 1051.	4.1	19
126	Xanthan gum â^' mucin complexation: Molecular interactions, thermodynamics, and rheological analysis. Food Hydrocolloids, 2021, 114, 106579.	10.7	19

#	Article	IF	CITATIONS
127	Hydrodynamics in an Internal Loop Airlift Reactor with a Convergence-Divergence Draft Tube. Chemical Engineering and Technology, 2000, 23, 38-45.	1.5	18
128	Novel comb-like ionenes with aliphatic side chains: synthesis and antimicrobial properties. Journal of Materials Science, 2013, 48, 1162-1171.	3.7	18
129	Comparative study of ultra-lightweight pulp foams obtained from various fibers and reinforced by MFC. Carbohydrate Polymers, 2018, 182, 92-97.	10.2	18
130	Bio-inspired construction of cellulose-based molecular imprinting membrane with selective recognition surface for paclitaxel separation. Applied Surface Science, 2019, 466, 244-253.	6.1	18
131	Porphyrin derived dual-emissive carbon quantum dots: Customizable synthesis and application for intracellular Cu2+ quantification. Sensors and Actuators B: Chemical, 2021, 343, 130072.	7.8	18
132	Hierarchically porous biochar derived from orthometric integration of wooden and bacterial celluloses for high-performance electromagnetic wave absorption. Composites Science and Technology, 2022, 218, 109184.	7.8	18
133	Novel flocculation system based on 21-arm cationic star polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 172-178.	4.7	17
134	Cationic-modified microporous zeolites/anionic polymer system for simultaneous removal of dissolved and colloidal substances from wastewater. Separation and Purification Technology, 2006, 49, 264-270.	7.9	17
135	Influence of Fillers on Sizing Efficiency and Hydrolysis of Alkyl Ketene Dimer. Canadian Journal of Chemical Engineering, 2005, 83, 603-606.	1.7	17
136	Immobilizing Laccase on Modified Cellulose/CF Beads to Degrade Chlorinated Biphenyl in Wastewater. Polymers, 2018, 10, 798.	4.5	17
137	Remarkable fluorimetric response and colorimetric sense on the mercury deionization in aqueous solution by a new adsorbent based on chitosan. European Polymer Journal, 2020, 130, 109663.	5.4	17
138	Cellulose-based adsorbents loaded with zero-valent iron for removal of metal ions from contaminated water. Environmental Science and Pollution Research, 2020, 27, 33234-33247.	5.3	17
139	Lignin Redistribution for Enhancing Barrier Properties of Cellulose-Based Materials. Polymers, 2019, 11, 1929.	4.5	16
140	Characteristics of asâ€prepared biochar derived from catalytic pyrolysis within moderateâ€temperature ionic liquid for <scp>CO₂</scp> uptake. Canadian Journal of Chemical Engineering, 2020, 98, 690-704.	1.7	16
141	Dual responsive copolymers-grafted microfibrillated cellulose composites for removing lead ions from aqueous solution. Journal of Cleaner Production, 2020, 258, 120867.	9.3	16
142	Naturally Occurring Exopolysaccharide Nanoparticles: Formation Process and Their Application in Glutathione Detection. ACS Applied Materials & 2021, 10, 12, 13, 19756-19767.	8.0	16
143	Polyelectrolyte complex containing antimicrobial guanidine-based polymer and its adsorption on cellulose fibers. Holzforschung, 2014, 68, 103-111.	1.9	15
144	Microsphere-structured hydrogel crosslinked by polymerizable protein-based nanospheres. Polymer, 2020, 211, 123114.	3.8	15

#	Article	IF	CITATIONS
145	Advance in constructing acid catalyst-solvent combinations for efficient transformation of glucose into 5-Hydroxymethylfurfural. Molecular Catalysis, 2020, 498, 111254.	2.0	15
146	Study on cellulose microfilaments based composite spheres: Microwave-assisted synthesis, characterization, and application in pollutant removal. Journal of Environmental Management, 2018, 228, 85-92.	7.8	14
147	Suppressing Ammonia Re-Emission with the Aid of the Co3O4-NPs@KIT-6 Catalyst in Ammonia-Based Desulfurization. Environmental Science & amp; Technology, 2019, 53, 13477-13485.	10.0	14
148	Impregnation of PEI in Novel Porous MgCO ₃ for Carbon Dioxide Capture from Flue Gas. Industrial & Engineering Chemistry Research, 2019, 58, 4979-4987.	3.7	14
149	Antimicrobial polyethylene wax emulsion and its application on active paperâ€based packaging material. Journal of Applied Polymer Science, 2015, 132, .	2.6	13
150	Nonisothermal Cure Kinetics of Epoxy/Polyvinylpyrrolidone Functionalized Superparamagnetic Nano-Fe3O4 Composites: Effect of Zn and Mn Doping. Journal of Composites Science, 2020, 4, 55.	3.0	13
151	Antimicrobial and Thermal-Responsive Layer-by-Layer Assembly Based on Ionic-Modified Guanidine Polymer and PVA. Polymer Bulletin, 2008, 61, 541-551.	3.3	12
152	Preparation of hemicellulose-containing latex and its application as absorbent toward dyes. Journal of Materials Science, 2015, 50, 1673-1678.	3.7	12
153	Redox- and Enzyme-Responsive Macrospheres Gatekept by Polysaccharides for Controlled Release of Agrochemicals. Journal of Agricultural and Food Chemistry, 2021, 69, 11163-11170.	5.2	12
154	Novel Retention System Based on (2,3-Epoxypropyl)trimethylammonium Chloride Modified Silica Nanoparticles and Anionic Polymer. Industrial & Engineering Chemistry Research, 2005, 44, 539-545.	3.7	11
155	Amphiphilic cationic copolymers with ciprofloxacin: preparation and antimicrobial activities. New Journal of Chemistry, 2016, 40, 1354-1364.	2.8	11
156	Preparation of Novel Nano-Sized Hydrogel Microcapsules via Layer-By-Layer Assembly as Delivery Vehicles for Drugs onto Hygiene Paper. Polymers, 2018, 10, 335.	4.5	11
157	Revealing Adsorption Behaviors of Amphoteric Polyacrylamide on Cellulose Fibers and Impact on Dry Strength of Fiber Networks. Polymers, 2019, 11, 1886.	4.5	11
158	Properties of a novel thermal sensitive polymer based on poly(vinyl alcohol) and its layer-by-layer assembly. Polymers for Advanced Technologies, 2007, 18, 335-345.	3.2	10
159	Solvent-free synthesis of the cellulose-based hybrid beads for adsorption of lead ions in aqueous solutions. RSC Advances, 2017, 7, 53899-53906.	3.6	10
160	Insight into structural role of 2D/3D mesoporous silicon in catalysis of magnesium sulfite oxidation. Applied Catalysis A: General, 2018, 566, 33-43.	4.3	10
161	Preparation and characterization of amphoteric cellulose–montmorillonite composite beads with a controllable porous structure. Journal of Applied Polymer Science, 2019, 136, 47941.	2.6	10
162	Impacts of degree of substitution of quaternary cellulose on the strength improvement of fiber networks. International Journal of Biological Macromolecules, 2021, 181, 41-44.	7.5	10

#	Article	IF	CITATIONS
163	Bio-Wax Latex-Modified Paper as Antimicrobial and Water-Vapor-Resistant Packaging Material. Journal of Wood Chemistry and Technology, 2016, 36, 182-191.	1.7	9
164	Dual-Functional Redox-Responsive Nanocarriers for Loading Phytohormone and Complexation with Heavy Metal Ions. Journal of Agricultural and Food Chemistry, 2020, 68, 5076-5085.	5.2	9
165	Impact of degree of substitution of cationic xylan on strength of cellulose fiber networks along with medium conductivity. Industrial Crops and Products, 2021, 159, 113058.	5.2	9
166	In-situ and real-time probing cellulase biosensor formation and its interaction with lignosulfonate in varied media. Sensors and Actuators B: Chemical, 2021, 329, 129114.	7.8	9
167	Thermodynamics of <scp>CO₂</scp> adsorption on celluloseâ€derived biochar prepared in ionic liquid. Canadian Journal of Chemical Engineering, 2021, 99, 1940-1961.	1.7	9
168	Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers, 2022, 14, 1806.	4.5	9
169	Dimethylolurea as a Novel Slow-Release Nitrogen Source for Nitrogen Leaching Mitigation and Crop Production. Journal of Agricultural and Food Chemistry, 2019, 67, 7616-7625.	5.2	8
170	Enhanced oxidation of sulfite over a highly efficient biochar-induced silica composite for sulfur resource utilization in magnesia desulfurization. Journal of Materials Chemistry A, 2021, 9, 13288-13296.	10.3	8
171	Excellent Low-Temperature Formaldehyde Decomposition Performance over Pt Nanoparticles Directly Loaded on Cellulose Triacetate. Industrial & Engineering Chemistry Research, 2020, 59, 21720-21728.	3.7	8
172	Exploring the promoting mechanisms of bovine serum albumin, lignosulfonate, and polyethylene glycol for lignocellulose saccharification from perspective of molecular interactions with cellulase. Arabian Journal of Chemistry, 2022, 15, 103910.	4.9	8
173	Defect-engineered cobalt-based solid catalyst for high efficiency oxidation of sulfite. Chemical Engineering Science, 2019, 197, 1-10.	3.8	7
174	Centrosymmetric Versus Noncentrosymmetric: Structural and Optical Studies on Inorganicâ€Organic Hybrid Compounds of Bismuth Thiourea Iodide Resulting from Acid Effect. ChemistrySelect, 2017, 2, 5882-5886.	1.5	7
175	Polystyrene sulfonate is effective for enhancing biomass enzymatic saccharification under green liquor pretreatment in bioenergy poplar. , 2022, 15, 10.		7
176	Synthesis of Amphiphilic Copolymers Containing Ciprofloxacin and Amine Groups and Their Antimicrobial Performances As Revealed by Confocal Laser-Scanning Microscopy and Atomic-Force Microscopy. Journal of Agricultural and Food Chemistry, 2018, 66, 8406-8414.	5.2	6
177	Preparation of Copolymer-Based Nanoparticles with Broad-Spectrum Antimicrobial Activity. Polymers, 2017, 9, 717.	4.5	5
178	Evaluating the refractive index, thickness and porosity of ultrathin cellulose nanocrystal films with different polymorphs by SPR technique. International Journal of Biological Macromolecules, 2021, 193, 1209-1214.	7.5	5
179	Experimental Investigation of Surfactant Partition in Heavy Oil/Water/Sand Systems. Petroleum Science and Technology, 2008, 26, 1036-1046.	1.5	4
180	Improving ionic conductivity of polycrystalline lithium ion conductors by interacting with mesoporous materials. Materials Letters, 2016, 177, 50-53.	2.6	4

#	Article	IF	CITATIONS
181	Dynamic Flocculation of Ultrafine Particles of Coal-Fired Power Plant Induced by Ionic Polyacrylamides at Bench and Pilot Scales. Industrial & Engineering Chemistry Research, 2017, 56, 12438-12446.	3.7	4
182	Naturally Occurring Exopolysaccharide Nanoparticles for Dye Adsorption. ACS Applied Nano Materials, 2021, 4, 10458-10466.	5.0	4
183	Hierarchically porous tobacco midrib-based biochar prepared by a simple dual-templating approach for highly efficient Rhodamine B removal. Arabian Journal of Chemistry, 2022, 15, 103904.	4.9	4
184	Preparation and characterization of cysteineâ€formaldehyde crossâ€linked complex for CO ₂ capture. Canadian Journal of Chemical Engineering, 2019, 97, 3012-3024.	1.7	2
185	Intermolecular interactions between \hat{l}^2 -cyclodextrin and water. RSC Advances, 2021, 11, 24807-24815.	3.6	2
186	Mapping of β-lactoglobulin â^' mucin interactions in an in vitro astringency model: Phase compatibility, adsorption mechanism and thermodynamic analysis. Food Hydrocolloids, 2022, 129, 107640.	10.7	2