Ping-An Hu

List of Publications by Citations

Source: https://exaly.com/author-pdf/8855984/ping-an-hu-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,745 80 45 123 h-index g-index citations papers 128 8,038 6.09 9.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
123	Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, 6, 598	8- 94 .7	658
122	Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. <i>Nano Letters</i> , 2013 , 13, 1649-54	11.5	573
121	Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. <i>Advanced Materials</i> , 2014 , 26, 6587-93	24	331
120	Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. <i>Materials Horizons</i> , 2019 , 6, 470-506	14.4	292
119	Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors. <i>Advanced Materials</i> , 2014 , 26, 1559-64	24	178
118	Intrinsic Two-Dimensional Ferroelectricity with Dipole Locking. <i>Physical Review Letters</i> , 2018 , 120, 2276	60 / 1.4	170
117	Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7022-7028	7.1	162
116	Synthesis of two-dimensional EGa2O3 nanosheets for high-performance solar blind photodetectors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3254-3259	7.1	139
115	Gate Tuning of High-Performance InSe-Based Photodetectors Using Graphene Electrodes. <i>Advanced Optical Materials</i> , 2015 , 3, 1418-1423	8.1	137
114	Vertical 2D MoO2/MoSe2 CoreBhell Nanosheet Arrays as High-Performance Electrocatalysts for Hydrogen Evolution Reaction. <i>Advanced Functional Materials</i> , 2016 , 26, 8537-8544	15.6	134
113	Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. <i>Nanotechnology</i> , 2017 , 28, 27LT01	3.4	133
112	Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors. <i>Sensors</i> , 2010 , 10, 5133-59	3.8	129
111	Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. <i>Nano Research</i> , 2014 , 7, 694-703	10	124
110	A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction. <i>ACS Nano</i> , 2018 , 12, 8739-8747	16.7	120
109	Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional ⊞n2Se3. <i>Chemistry of Materials</i> , 2016 , 28, 4278-4283	9.6	112
108	3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. <i>Journal of Alloys and Compounds</i> , 2015 , 620, 31-37	5.7	107
107	Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1989-1995	13	100

(2016-2015)

106	Highly Stretchable and Conductive CoreBheath Chemical Vapor Deposition Graphene Fibers and Their Applications in Safe Strain Sensors. <i>Chemistry of Materials</i> , 2015 , 27, 6969-6975	9.6	93	
105	Performance improvement of multilayer InSe transistors with optimized metal contacts. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 3653-8	3.6	92	
104	Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors. <i>Scientific Reports</i> , 2015 , 5, 8130	4.9	91	
103	Mesocrystalline Ti3+TiO2 hybridized g-C3N4 for efficient visible-light photocatalysis. <i>Carbon</i> , 2018 , 128, 21-30	10.4	87	
102	Moir[Phonons in Twisted Bilayer MoS. ACS Nano, 2018, 12, 8770-8780	16.7	85	
101	3D Graphene Functionalized by Covalent Organic Framework Thin Film as Capacitive Electrode in Alkaline Media. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 17837-43	9.5	83	
100	Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. <i>Energy</i> , 2018 , 143, 43-55	7.9	79	
99	Effective Synergistic Effect of Dipeptide-Polyoxometalate-Graphene Oxide Ternary Hybrid Materials on Peroxidase-like Mimics with Enhanced Performance. <i>ACS Applied Materials & Discrete Materials & D</i>	9.5	77	
98	Low-Temperature Growth of Large-Area Heteroatom-Doped Graphene Film. <i>Chemistry of Materials</i> , 2014 , 26, 2460-2466	9.6	77	
97	Multiwall carbon nanotube encapsulated Co grown on vertically oriented graphene modified carbon cloth as bifunctional electrocatalysts for solid-state Zn-air battery. <i>Carbon</i> , 2019 , 144, 370-381	10.4	76	
96	Growth and Etching of Monolayer Hexagonal Boron Nitride. Advanced Materials, 2015, 27, 4858-64	24	75	
95	Two-Dimensional van der Waals Materials with Aligned In-Plane Polarization and Large Piezoelectric Effect for Self-Powered Piezoelectric Sensors. <i>Nano Letters</i> , 2019 , 19, 5410-5416	11.5	74	
94	Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13471-13478	13	74	
93	Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential. <i>Applied Catalysis B: Environmental</i> , 2020 , 260, 118134	21.8	67	
92	Defect engineered Ta2O5 nanorod: One-pot synthesis, visible-light driven hydrogen generation and mechanism. <i>Applied Catalysis B: Environmental</i> , 2017 , 217, 48-56	21.8	65	
91	Robust Piezo-Phototronic Effect in Multilayer InSe for High-Performance Self-Powered Flexible Photodetectors. <i>ACS Nano</i> , 2019 , 13, 7291-7299	16.7	65	
90	In-Plane Mosaic Potential Growth of Large-Area 2D Layered Semiconductors MoS-MoSe Lateral Heterostructures and Photodetector Application. <i>ACS Applied Materials & Description (Materials & Description (Materials & Description))</i> 1684-	·1691	63	
89	Controlled growth of vertical 3D MoS2(1日)Se2x nanosheets for an efficient and stable hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18060-18066	13	61	

88	Enhanced pyroelectric property in (1៧)(Bi0.5Na0.5)TiO3-xBa(Zr0.055Ti0.945)O3: Role of morphotropic phase boundary and ferroelectric-antiferroelectric phase transition. <i>Applied Physics Letters</i> , 2013 , 103, 182906	3.4	59
87	Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. <i>Nanoscale</i> , 2018 , 10, 7387-7395	7.7	58
86	CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18283		58
85	Ultrafast and Sensitive Self-Powered Photodetector Featuring Self-Limited Depletion Region and Fully Depleted Channel with van der Waals Contacts. <i>ACS Nano</i> , 2020 , 14, 9098-9106	16.7	57
84	TaOC chemical bond enhancing charge separation between Ta4+ doped Ta2O5 quantum dots and cotton-like g-C3N4. <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 271-280	21.8	56
83	Efficiently Synergistic Hydrogen Evolution Realized by Trace Amount of Pt-Decorated Defect-Rich SnS Nanosheets. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 37750-37759	9.5	54
82	Kirigami-Inspired Highly Stretchable Nanoscale Devices Using Multidimensional Deformation of Monolayer MoS2. <i>Chemistry of Materials</i> , 2018 , 30, 6063-6070	9.6	49
81	Non-planar vertical photodetectors based on free standing two-dimensional SnS nanosheets. <i>Nanoscale</i> , 2017 , 9, 9167-9174	7.7	46
80	An efficient WSe2/Co0.85Se/graphene hybrid catalyst for electrochemical hydrogen evolution reaction. <i>RSC Advances</i> , 2016 , 6, 51725-51731	3.7	46
79	Solid-State Reaction Synthesis of a InSe/CuInSe2 Lateral pfi Heterojunction and Application in High Performance Optoelectronic Devices. <i>Chemistry of Materials</i> , 2015 , 27, 983-989	9.6	45
78	Effects of Organic Molecules with Different Structures and Absorption Bandwidth on Modulating Photoresponse of MoS2 Photodetector. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 23362-70	9.5	44
77	A mixed-dimensional 1D Se-2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. <i>Nanoscale Horizons</i> , 2020 , 5, 564-572	10.8	43
76	Tuning electrochemical catalytic activity of defective 2D terrace MoSe2 heterogeneous catalyst via cobalt doping. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11357-11363	13	41
75	Hollow Spherical Nanoshell Arrays of 2D Layered Semiconductor for High-Performance Photodetector Device. <i>Advanced Functional Materials</i> , 2018 , 28, 1705153	15.6	39
74	Gate Modulation of Threshold Voltage Instability in Multilayer InSe Field Effect Transistors. <i>ACS Applied Materials & District Materia</i>	9.5	38
73	Interfacial Engineering for Fabricating High-Performance Field-Effect Transistors Based on 2D Materials. <i>Small Methods</i> , 2018 , 2, 1700384	12.8	38
72	Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. <i>Scientific Reports</i> , 2016 , 6, 28330	4.9	38
71	Ternary SnS(2-x)Se(x) Alloys Nanosheets and Nanosheet Assemblies with Tunable Chemical Compositions and Band Gaps for Photodetector Applications. <i>Scientific Reports</i> , 2015 , 5, 17109	4.9	37

(2020-2020)

70	Enhanced Piezoelectric Effect Derived from Grain Boundary in MoS Monolayers. <i>Nano Letters</i> , 2020 , 20, 201-207	11.5	35
69	High-performance and flexible photodetectors based on chemical vapor deposition grown two-dimensional InSe nanosheets. <i>Nanotechnology</i> , 2018 , 29, 445205	3.4	34
68	Soft-lithographic processed soluble micropatterns of reduced graphene oxide for wafer-scale thin film transistors and gas sensors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 714-718		32
67	Poor crystalline MoS2 with highly exposed active sites for the improved hydrogen evolution reaction performance. <i>Journal of Alloys and Compounds</i> , 2019 , 777, 514-523	5.7	31
66	Atomically Thin Hexagonal Boron Nitride and Its Heterostructures. <i>Advanced Materials</i> , 2021 , 33, e2000	07 <u>26</u> β	31
65	Phase-Engineering-Driven Enhanced Electronic and Optoelectronic Performance of Multilayer InSe Nanosheets. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	30
64	Perspective of graphene-based electronic devices: Graphene synthesis and diverse applications. <i>APL Materials</i> , 2019 , 7, 020901	5.7	29
63	Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials. <i>ACS Applied Materials & Discrete Mate</i>	9.5	29
62	Lateral Monolayer MoSe -WSe p-n Heterojunctions with Giant Built-In Potentials. Small, 2020, 16, e200	2263	29
61	Water-assisted growth of large-sized single crystal hexagonal boron nitride grains. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1836-1840	7.8	27
60	Patterned Growth of P-Type MoS2 Atomic Layers Using Sol © el as Precursor. <i>Advanced Functional Materials</i> , 2016 , 26, 6371-6379	15.6	26
59	Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 11675-81	9.5	21
58	Multilayer InSe-Te van der Waals Heterostructures with an Ultrahigh Rectification Ratio and Ultrasensitive Photoresponse. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 37313-37319	9.5	20
57	Photoresponse Enhancement in Monolayer ReS Phototransistor Decorated with CdSe-CdS-ZnS Quantum Dots. <i>ACS Applied Materials & </i>	9.5	19
56	Iron-Doped Ni5P4 Ultrathin Nanoporous Nanosheets for Water Splitting and On-Demand Hydrogen Release via NaBH4 Hydrolysis. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3091-3099	5.6	19
55	Mesocrystalline Ta2O5 nanosheets supported PdPt nanoparticles for efficient photocatalytic hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 8232-8242	6.7	19
54	Fabrication of highly oriented reduced graphene oxide microbelts array for massive production of sensitive ammonia gas sensors. <i>Journal of Micromechanics and Microengineering</i> , 2013 , 23, 095031	2	19
53	Intrinsic Dipole Coupling in 2D van der Waals Ferroelectrics for Gate-Controlled Switchable Rectifier. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900975	6.4	19

52	Superstructure TaO mesocrystals derived from (NH)TaOF mesocrystals with efficient photocatalytic activity. <i>Dalton Transactions</i> , 2018 , 47, 1948-1957	4.3	18
51	Shape evolution of two dimensional hexagonal boron nitride single domains on Cu/Ni alloy and its applications in ultraviolet detection. <i>Nanotechnology</i> , 2019 , 30, 245706	3.4	17
50	Sputtered ZnO film on aluminium foils for flexible ultrasonic transducers. <i>Ultrasonics</i> , 2014 , 54, 1991-8	3.5	17
49	Role of Sulfites in the Water Splitting Reaction. <i>Journal of Solution Chemistry</i> , 2016 , 45, 67-80	1.8	16
48	High-Performance Broadband Photoelectrochemical Photodetectors Based on Ultrathin BiOS Nanosheets ACS Applied Materials & amp; Interfaces, 2022, 14, 7175-7183	9.5	16
47	MoC based MottBchottky electrocatalyst for boosting the hydrogen evolution reaction performance. Sustainable Energy and Fuels, 2020, 4, 407-416	5.8	16
46	High-Performance van der Waals Metal-Insulator-Semiconductor Photodetector Optimized with Valence Band Matching. <i>Advanced Functional Materials</i> , 2021 , 31, 2104359	15.6	15
45	Synchronous Enhancement for Responsivity and Response Speed in InSe Photodetector Modulated by Piezoresistive Effect. <i>ACS Applied Materials & Enhancement for Responsivity and Response Speed in InSe Photodetector Modulated by Piezoresistive Effect. ACS Applied Materials & Description (1988) 11, 47098-47105</i>	9.5	15
44	Modulation of opto-electronic properties of InSe thin layers via phase transformation. <i>RSC Advances</i> , 2016 , 6, 70452-70459	3.7	14
43	Controlled growth of six-point stars MoS by chemical vapor deposition and its shape evolution mechanism. <i>Nanotechnology</i> , 2017 , 28, 395601	3.4	14
42	Bifunctional hydrogen evolution and oxygen evolution catalysis using CoP-embedded N-doped nanoporous carbon synthesized via TEOS-assisted method. <i>Energy</i> , 2018 , 165, 537-548	7.9	14
41	Temperature-dependent growth of few layer <code>EnSe</code> and <code>En2Se3</code> single crystals for optoelectronic device. <i>Semiconductor Science and Technology</i> , 2018 , 33, 125002	1.8	14
40	Two-Dimensional Nonlayered CuinSe2 Nanosheets for High-Performance Photodetectors. <i>ACS Applied Nano Materials</i> , 2018 , 1, 5414-5418	5.6	14
39	Carbon nanomaterials: controlled growth and field-effect transistor biosensors. <i>Frontiers of Materials Science</i> , 2012 , 6, 26-46	2.5	13
38	Performance Improvement of Multilayered SnS2 Field Effect Transistors through Synergistic Effect of Vacancy Repairing and Electron Doping Introduced by EDTA. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 2380-2388	4	12
37	Enhanced photoresponse of monolayer MoS 2 through hybridization with carbon quantum dots as efficient photosensitizer. <i>2D Materials</i> , 2019 , 6, 035025	5.9	12
36	Enhanced thermal shock resistance of ultra-high temperature ceramic by biomimetic surface modification. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2199-2206	13	12
35	Synthesis of High-Quality Multilayer Hexagonal Boron Nitride Films on Au Foils for Ultrahigh Rejection Ratio Solar-Blind Photodetection. <i>ACS Applied Materials & District Research</i> , 12, 28351-285	3 3 9	12

(2020-2016)

34	Hierarchical Assembly of Tungsten Spheres and Epoxy Composites in Three-Dimensional Graphene Foam and Its Enhanced Acoustic Performance as a Backing Material. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2016 , 8, 18496-504	9.5	12
33	Chitosan assisted synthesis of 3D graphene@Au nanosheet composites: catalytic reduction of 4-nitrophenol. <i>RSC Advances</i> , 2015 , 5, 79456-79462	3.7	11
32	Synthesis of Superlattice InSe Nanosheets with Enhanced Electronic and Optoelectronic Performance. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	10
31	Ultralow Power Optical Synapses Based on MoS Layers by Indium-Induced Surface Charge Doping for Biomimetic Eyes. <i>Advanced Materials</i> , 2021 , 33, e2104960	24	10
30	Monolayer hydrophilic MoS2 with strong charge trapping for atomically thin neuromorphic vision systems. <i>Materials Horizons</i> , 2020 , 7, 3316-3324	14.4	10
29	Fast growth of graphene on SiO2/Si substrates by atmospheric pressure chemical vapor deposition with floating metal catalysts. <i>Science China Chemistry</i> , 2016 , 59, 707-712	7.9	10
28	Synthesis of Two-Dimensional Alloy GaInSe Nanosheets for High-Performance Photodetector. <i>ACS Applied Materials & District Action Applied Materials & District Action Action Action Action Action Action Action Control and District Control and District Action Control and District Control and Distri</i>	9.5	10
27	Low temperature growth of clean single layer hexagonal boron nitride flakes and film for graphene-based field-effect transistors. <i>Science China Materials</i> , 2019 , 62, 1218-1225	7.1	9
26	Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments. <i>Lab on A Chip</i> , 2021 , 21, 254-271	7.2	9
25	Vertical MoSe-MoO p-n heterojunction and its application in optoelectronics. <i>Nanotechnology</i> , 2018 , 29, 045202	3.4	9
24	Graphene oxide-stimulated acoustic attenuating performance of tungsten based epoxy films. Journal of Materials Chemistry C, 2015 , 3, 10848-10855	7.1	8
23	Contact engineering high-performance ambipolar multilayer tellurium transistors. <i>Nanotechnology</i> , 2020 , 31, 115204	3.4	7
22	High-Performance Devices Based on InSe-InGaSe Van der Waals Heterojunctions. <i>ACS Applied Materials & ACS Applied</i> (12, 24978-24983)	9.5	6
21	Design of carbon sources: starting point for chemical vapor deposition of graphene. <i>2D Materials</i> , 2019 , 6, 042003	5.9	6
20	Low Optical Writing Energy Multibit Optoelectronic Memory Based on SnS /h-BN/Graphene Heterostructure. <i>Small</i> , 2021 , 17, e2104459	11	5
19	Tunable electronic properties of multilayer InSe by alloy engineering for high performance self-powered photodetector. <i>Journal of Colloid and Interface Science</i> , 2020 , 565, 239-244	9.3	5
18	Novel Hollow Graphene Flowers Synthesized by Cu-Assisted Chemical Vapor Deposition. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800347	4.6	4
17	Synthesis of Multilayer InSe0.82Te0.18 alloy for high performance near-infrared photodetector. Journal of Alloys and Compounds, 2020 , 815, 152375	5.7	4

16	Graphene Oxide Film Based Moisture-driven Nanogenerator and Its Application as Self-powered Relative Humidity Sensor. <i>Chemistry Letters</i> , 2018 , 47, 853-856	1.7	4
15	Skin-inspired tactile sensor based on gradient pore structure enable broad range response and ultrahigh pressure resolution. <i>Chemical Engineering Journal</i> , 2022 , 136446	14.7	4
14	The role of hybrid dielectric interfaces in improving the performance of multilayer InSe transistors. Journal of Materials Chemistry C, 2020 , 8, 6701-6709	7.1	3
13	Site-Selective Chlorination of Graphene through Laser-Induced In Situ Decomposition of AgCl Nanoparticles. <i>ChemNanoMat</i> , 2016 , 2, 515-519	3.5	3
12	Asymmetrically synchronous reduction and assembly of graphene oxide film on metal foil for moisture responsive actuator. <i>Nanotechnology</i> , 2019 , 30, 445601	3.4	3
11	Graphene nanoparticle strain sensors with modulated sensitivity through tunneling types transition. <i>Nanotechnology</i> , 2019 , 30, 425501	3.4	3
10	CVD growth of largeBcale hexagon-like shaped MoSe2 monolayers with sawtooth edge. <i>Chemical Physics Letters</i> , 2019 , 733, 136663	2.5	2
9	Growth and Etching Kinetics: Growth and Etching of Monolayer Hexagonal Boron Nitride (Adv. Mater. 33/2015). <i>Advanced Materials</i> , 2015 , 27, 4948-4948	24	2
8	Lowering the Contact Barriers of 2D Organic F CuPc Field-Effect Transistors by Introducing Van der Waals Contacts. <i>Small</i> , 2021 , 17, e2007739	11	2
7	Ultralow Power Optical Synapses Based on MoS 2 Layers by Indium-Induced Surface Charge Doping for Biomimetic Eyes (Adv. Mater. 52/2021). <i>Advanced Materials</i> , 2021 , 33, 2170409	24	2
6	A Capacitive and Piezoresistive Hybrid Sensor for Long-Distance Proximity and Wide-Range Force Detection in Human R obot Collaboration. <i>Advanced Intelligent Systems</i> ,2100213	6	1
5	Charge Transfer at the Hetero-Interface of WSe2/InSe Induces Efficient Doping to Achieve Multi-Functional Lateral Homo-Junctions. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100584	6.4	1
4	Transparent and High-Absolute-Effectiveness Electromagnetic Interference Shielding Film Based on Single-Crystal Graphene. <i>Advanced Materials Technologies</i> ,2101465	6.8	1
3	Mixed-Dimensional InSeBi Heterojunction Nanostructures for Self-Powered Broadband Photodetectors. ACS Applied Nano Materials,	5.6	О
2	A Capacitive and Piezoresistive Hybrid Sensor for Long-Distance Proximity and Wide-Range Force Detection in Human R obot Collaboration. <i>Advanced Intelligent Systems</i> , 2022 , 4, 2270011	6	О
1	Patterned Growth: Patterned Growth of P-Type MoS2 Atomic Layers Using Sol G el as Precursor (Adv. Funct. Mater. 35/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 6495-6495	15.6	