Yongfu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8855885/publications.pdf Version: 2024-02-01

YONCELL MANC

#	Article	IF	CITATIONS
1	Enhanced lipogenesis through Pparl̂ ³ helps cavefish adapt to food scarcity. Current Biology, 2022, 32, 2272-2280.e6.	1.8	23
2	Robust and sensitive in situ RNA detection using Yn-situ. Cell Reports Methods, 2022, 2, 100201.	1.4	3
3	Liver-derived cell lines from cavefish Astyanax mexicanus as an in vitro model for studying metabolic adaptation. Scientific Reports, 2022, 12, .	1.6	8
4	NOTCH Signaling Controls Ciliary Body Morphogenesis and Secretion by Directly Regulating Nectin Protein Expression. Cell Reports, 2021, 34, 108603.	2.9	11
5	Tumor-initiating stem cell shapes its microenvironment into an immunosuppressive barrier and pro-tumorigenic niche. Cell Reports, 2021, 36, 109674.	2.9	33
6	Step-by-step preparation of mouse eye sections for routine histology, immunofluorescence, and RNA in situ hybridization multiplexing. STAR Protocols, 2021, 2, 100879.	0.5	6
7	Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish. Nature Ecology and Evolution, 2020, 4, 1416-1430.	3.4	46
8	Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science, 2020, 369, .	6.0	147
9	A review on histotechnology practices in COVID-19 pathology investigations. Journal of Histotechnology, 2020, 43, 153-158.	0.2	2
10	Alkaline phosphatase-based chromogenic and fluorescence detection method for BaseScopeâ,,¢ <i>In Situ</i> hybridization. Journal of Histotechnology, 2019, 42, 193-201.	0.2	11
11	Comparison of bleaching protocols utilizing hematoxylin and eosin stain and immunohistochemical proliferation marker MCM3 in pigmented melanomas. Journal of Histotechnology, 2019, 42, 177-182.	0.2	10
12	An Adult Brain Atlas Reveals Broad Neuroanatomical Changes in Independently Evolved Populations of Mexican Cavefish. Frontiers in Neuroanatomy, 2019, 13, 88.	0.9	36
13	Continuing the advancement of Journal of Histotechnology - one issue at a time. Journal of Histotechnology, 2019, 42, 165-166.	0.2	0
14	CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Developmental Biology, 2018, 441, 313-318.	0.9	90
15	Seeing the future of histotechnology through its history. Journal of Histotechnology, 2018, 41, 135-136.	0.2	0
16	Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 2018, 28, 904-917.	5.7	203
17	Overexpression of endophilin A1 exacerbates synaptic alterations in a mouse model of Alzheimer's disease. Nature Communications, 2018, 9, 2968.	5.8	37
18	Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes. Nature Protocols, 2018, 13, 1869-1895.	5.5	68

YONGFU WANG

#	Article	IF	CITATIONS
19	Prospectively Isolated Tetraspanin+ Neoblasts Are Adult Pluripotent Stem Cells Underlying Planaria Regeneration. Cell, 2018, 173, 1593-1608.e20.	13.5	213
20	Superresolution expansion microscopy reveals the three-dimensional organization of the <i>Drosophila</i> synaptonemal complex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6857-E6866.	3.3	121
21	F1F0 ATP Synthase–Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline. Diabetes, 2016, 65, 3482-3494.	0.3	41
22	Overexpression of 17β-hydroxysteroid dehydrogenase type 10 increases pheochromocytoma cell growth and resistance to cell death. BMC Cancer, 2015, 15, 166.	1.1	19
23	NR2B-dependent cyclophilin D translocation suppresses the recovery of synaptic transmission after oxygen–glucose deprivation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2225-2234.	1.8	9
24	Increased neuronal PreP activity reduces AÎ ² accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease's mouse model. Human Molecular Genetics, 2015, 24, 5198-5210.	1.4	70
25	Drp1-Mediated Mitochondrial Abnormalities Link to Synaptic Injury in Diabetes Model. Diabetes, 2015, 64, 1728-1742.	0.3	121
26	Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer's disease cybrid cell. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 220-231.	1.8	151
27	Genetic deficiency of neuronal RAGE protects against AGE-induced synaptic injury. Cell Death and Disease, 2014, 5, e1288-e1288.	2.7	27
28	Synergistic Exacerbation of Mitochondrial and Synaptic Dysfunction and Resultant Learning and Memory Deficit in a Mouse Model of Diabetic Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 451-463.	1.2	30
29	Neuronal Gap Junction Coupling Is Regulated by Glutamate and Plays Critical Role in Cell Death during Neuronal Injury. Journal of Neuroscience, 2012, 32, 713-725.	1.7	75
30	Regulation of connexin 36 expression during development. Neuroscience Letters, 2012, 513, 17-19.	1.0	12
31	Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact. Neuroscience Letters, 2012, 524, 16-19.	1.0	29
32	Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice. Stress, 2012, 15, 237-242.	0.8	8
33	Neuronal Clud1 (glutamate dehydrogenase 1) over-expressing mice: Increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Neurochemistry International, 2011, 59, 473-481.	1.9	31
34	Deletion of neuronal gap junction protein connexin 36 impairs hippocampal LTP. Neuroscience Letters, 2011, 502, 30-32.	1.0	35
35	Interplay of Chemical Neurotransmitters Regulates Developmental Increase in Electrical Synapses. Journal of Neuroscience, 2011, 31, 5909-5920.	1.7	48
36	Neuronal Gap Junctions Are Required for NMDA Receptor–Mediated Excitotoxicity: Implications in Ischemic Stroke. Journal of Neurophysiology, 2010, 104, 3551-3556.	0.9	58

YONGFU WANG

#	Article	IF	CITATIONS
37	Transgenic Expression of <i>Glud1</i> (Glutamate Dehydrogenase 1) in Neurons: <i>In Vivo</i> Model of Enhanced Glutamate Release, Altered Synaptic Plasticity, and Selective Neuronal Vulnerability. Journal of Neuroscience, 2009, 29, 13929-13944.	1.7	72
38	The in vivo synaptic plasticity mechanism of EGb 761-induced enhancement of spatial learning and memory in aged rats. British Journal of Pharmacology, 2006, 148, 147-153.	2.7	89
39	Aniracetam attenuates H2O2-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro. Neuroscience Bulletin, 2006, 22, 274-80.	1.5	5
40	Stress Enables Synaptic Depression in CA1 Synapses by Acute and Chronic Morphine: Possible Mechanisms for Corticosterone on Opiate Addiction. Journal of Neuroscience, 2004, 24, 2412-2420.	1.7	73
41	The effect of acute stress on LTP and LTD induction in the hippocampal CA1 region of anesthetized rats at three different ages. Brain Research, 2004, 1005, 187-192.	1.1	43