
Verdon Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8855201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quiescent and Active Hippocampal Neural Stem Cells with Distinct Morphologies Respond Selectively to Physiological and Pathological Stimuli and Aging. Cell Stem Cell, 2010, 6, 445-456.	11.1	620
2	Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nature Neuroscience, 2009, 12, 1248-1256.	14.8	447
3	RBPJκ-Dependent Signaling Is Essential for Long-Term Maintenance of Neural Stem Cells in the Adult Hippocampus. Journal of Neuroscience, 2010, 30, 13794-13807.	3.6	294
4	Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mechanisms of Development, 2002, 114, 153-159.	1.7	228
5	Notch1 is required for neuronal and glial differentiation in the cerebellum. Development (Cambridge), 2002, 129, 373-385.	2.5	224
6	Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO Journal, 2005, 24, 3504-3515.	7.8	185
7	Notch and Neurogenesis. Advances in Experimental Medicine and Biology, 2018, 1066, 223-234.	1.6	156
8	Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. European Journal of Neuroscience, 2007, 25, 1006-1022.	2.6	145
9	Epithelial Membrane Protein-1, Peripheral Myelin Protein 22, and Lens Membrane Protein 20 Define a Novel Gene Family. Journal of Biological Chemistry, 1995, 270, 28824-28833.	3.4	142
10	Neurogenic Subventricular Zone Stem/Progenitor Cells Are Notch1-Dependent in Their Active But Not Quiescent State. Journal of Neuroscience, 2012, 32, 5654-5666.	3.6	142
11	Notch, Epidermal Growth Factor Receptor, and β1-Integrin Pathways Are Coordinated in Neural Stem Cells. Journal of Biological Chemistry, 2006, 281, 5300-5309.	3.4	134
12	Angiotensin II AT2 receptors do not interact with guanine nucleotide binding proteins. European Journal of Pharmacology, 1991, 207, 157-163.	2.6	128
13	Transport of <i>Trembler-J</i> Mutant Peripheral Myelin Protein 22 Is Blocked in the Intermediate Compartment and Affects the Transport of the Wild-Type Protein by Direct Interaction. Journal of Neuroscience, 1999, 19, 2027-2036.	3.6	122
14	Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs. Nature Neuroscience, 2012, 15, 962-969.	14.8	117
15	Molecular Diversity Subdivides the Adult Forebrain Neural Stem Cell Population. Stem Cells, 2014, 32, 70-84.	3.2	108
16	miR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin. EMBO Journal, 2014, 33, 906-920.	7.8	101
17	β-catenin-mediated cell-adhesion is vital for embryonic forebrain development. Developmental Dynamics, 2005, 233, 528-539.	1.8	98
18	Epithelial membrane protein-2 and epithelial membrane protein-3: two novel members of the peripheral myelin protein 22 gene family. Gene, 1996, 175, 115-120.	2.2	93

Verdon Taylor

#	Article	IF	CITATIONS
19	Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone. Cell Reports, 2018, 22, 992-1002.	6.4	93
20	GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors. Development (Cambridge), 2014, 141, 83-90.	2.5	92
21	Striatal astrocytes produce neuroblasts in an excitotoxic model of Huntington's disease. Development (Cambridge), 2015, 142, 840-5.	2.5	92
22	Notch1 is required for neuronal and glial differentiation in the cerebellum. Development (Cambridge), 2002, 129, 373-85.	2.5	92
23	Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1high intermediate progenitors. Nature Communications, 2012, 3, 670.	12.8	88
24	Membrane-Bound Neuregulin1 Type III Actively Promotes Schwann Cell Differentiation of Multipotent Progenitor Cells. Developmental Biology, 2002, 246, 245-258.	2.0	87
25	A Tumor Suppressor Function for Notch Signaling in Forebrain Tumor Subtypes. Cancer Cell, 2015, 28, 730-742.	16.8	85
26	Multipotency of Adult Hippocampal NSCs InÂVivo Is Restricted by Drosha/NFIB. Cell Stem Cell, 2016, 19, 653-662.	11.1	83
27	Highly efficient baculovirus-mediated multigene delivery in primary cells. Nature Communications, 2016, 7, 11529.	12.8	83
28	Notch: an interactive player in neurogenesis and disease. Cell and Tissue Research, 2018, 371, 73-89.	2.9	82
29	Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity. Nature Neuroscience, 2020, 23, 1376-1387.	14.8	80
30	Reelin and Notch1 Cooperate in the Development of the Dentate Gyrus. Journal of Neuroscience, 2009, 29, 8578-8585.	3.6	79
31	The H ⁺ Vacuolar ATPase Maintains Neural Stem Cells in the Developing Mouse Cortex. Stem Cells and Development, 2011, 20, 843-850.	2.1	78
32	Zebrafish Pou5f1â€dependent transcriptional networks in temporal control of early development. Molecular Systems Biology, 2010, 6, 354.	7.2	77
33	Neural Stem Cell of the Hippocampus. Current Topics in Developmental Biology, 2014, 107, 183-206.	2.2	77
34	Enhancing the Reliability and Throughput of Neurosphere Culture on Hydrogel Microwell Arrays. Stem Cells, 2008, 26, 2586-2594.	3.2	73
35	Endocardial to Myocardial Notch-Wnt-Bmp Axis Regulates Early Heart Valve Development. PLoS ONE, 2013, 8, e60244.	2.5	73
36	ld4 Downstream of Notch2 Maintains Neural Stem Cell Quiescence in the Adult Hippocampus. Cell Reports, 2019, 28, 1485-1498.e6.	6.4	70

3

VERDON TAYLOR

#	Article	IF	CITATIONS
37	The Small GTPase RhoA Is Required to Maintain Spinal Cord Neuroepithelium Organization and the Neural Stem Cell Pool. Journal of Neuroscience, 2011, 31, 5120-5130.	3.6	62
38	Characterisation of autoantibodies to peripheral myelin protein 22 in patients with hereditary and acquired neuropathies. Journal of Neuroimmunology, 2000, 104, 155-163.	2.3	61
39	A Modified RMCE-Compatible Rosa26 Locus for the Expression of Transgenes from Exogenous Promoters. PLoS ONE, 2012, 7, e30011.	2.5	61
40	Hes5 Expression in the Postnatal and Adult Mouse Inner Ear and the Drug-Damaged Cochlea. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 321-340.	1.8	59
41	Identification and Characterization of a cDNA and the Structural Gene Encoding the Mouse Epithelial Membrane Protein-1. Genomics, 1996, 36, 379-387.	2.9	57
42	The Early Life of a Schwann Cell. Biological Chemistry, 2002, 383, 245-53.	2.5	56
43	FasL (CD95L/APO-1L) Resistance of Neurons Mediated by Phosphatidylinositol 3-Kinase-Akt/Protein Kinase B-Dependent Expression of Lifeguard/Neuronal Membrane Protein 35. Journal of Neuroscience, 2005, 25, 6765-6774.	3.6	53
44	<i>Jagged1</i> Ablation Results in Cerebellar Granule Cell Migration Defects and Depletion of Bergmann Glia. Developmental Neuroscience, 2006, 28, 70-80.	2.0	53
45	Postsynaptic and differential localization to neuronal subtypes of protocadherin β16 in the mammalian central nervous system. European Journal of Neuroscience, 2008, 27, 559-571.	2.6	53
46	Differential interactions between Notch and ID factors control neurogenesis by modulating Hes factor autoregulation. Development (Cambridge), 2017, 144, 3465-3474.	2.5	53
47	USP9X Enhances the Polarity and Self-Renewal of Embryonic Stem Cell-derived Neural Progenitors. Molecular Biology of the Cell, 2009, 20, 2015-2029.	2.1	52
48	Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming. PLoS Biology, 2018, 16, e2005233.	5.6	51
49	Fibrinogen induces neural stem cell differentiation into astrocytes in the subventricular zone via BMP signaling. Nature Communications, 2020, 11, 630.	12.8	50
50	Lineage analysis of quiescent regenerative stem cells in the adult brain by genetic labelling reveals spatially restricted neurogenic niches in the olfactory bulb. European Journal of Neuroscience, 2009, 30, 9-24.	2.6	49
51	Notch-Tnf signalling is required for development and homeostasis of arterial valves. European Heart Journal, 2017, 38, ehv520.	2.2	49
52	Oncogenic and Tumor-Suppressive Functions of NOTCH Signaling in Glioma. Cells, 2020, 9, 2304.	4.1	48
53	Notching up neural stem cell homogeneity in homeostasis and disease. Frontiers in Neuroscience, 2014, 8, 32.	2.8	45
54	Transcriptional Hallmarks of Heterogeneous Neural Stem Cell Niches of the Subventricular Zone. Stem Cells, 2015, 33, 2232-2242.	3.2	45

VERDON TAYLOR

#	Article	IF	CITATIONS
55	Neural Membrane Protein 35 (NMP35): A Novel Member of a Gene Family Which Is Highly Expressed in the Adult Nervous System. Molecular and Cellular Neurosciences, 1998, 11, 260-273.	2.2	42
56	Murine numb regulates granule cell maturation in the cerebellum. Developmental Biology, 2004, 266, 161-177.	2.0	41
57	Early phenotypic asymmetry of sister oligodendrocyte progenitor cells after mitosis and its modulation by aging and extrinsic factors. Glia, 2015, 63, 271-286.	4.9	41
58	Platelet-derived growth factor-BB supports the survival of cultured rat schwann cell precursors in synergy with neurotrophin-3. , 2000, 30, 290-300.		40
59	Ultra-multiplexed analysis of single-cell dynamics reveals logic rules in differentiation. Science Advances, 2019, 5, eaav7959.	10.3	40
60	SpL201: A conditionally immortalized Schwann cell precursor line that generates myelin. Glia, 2001, 36, 31-47.	4.9	38
61	TDP-43 induces p53-mediated cell death of cortical progenitors and immature neurons. Scientific Reports, 2018, 8, 8097.	3.3	38
62	Tead transcription factors differentially regulate cortical development. Scientific Reports, 2020, 10, 4625.	3.3	38
63	Expansion of human midbrain floor plate progenitors from induced pluripotent stem cells increases dopaminergic neuron differentiation potential. Scientific Reports, 2017, 7, 6036.	3.3	34
64	Isolation and Manipulation of Mammalian Neural Stem Cells In Vitro. Methods in Molecular Biology, 2009, 482, 143-158.	0.9	34
65	Untangling Cortical Complexity During Development. Journal of Experimental Neuroscience, 2018, 12, 117906951875933.	2.3	31
66	The E2A splice variant E47 regulates the differentiation of projection neurons via p57(KIP2) during cortical development. Development (Cambridge), 2017, 144, 3917-3931.	2.5	28
67	Neural membrane protein 35/Lifeguard is localized at postsynaptic sites and in dendrites. Molecular Brain Research, 2002, 107, 47-56.	2.3	27
68	Membrane topology of peripheral myelin protein 22. Journal of Neuroscience Research, 2000, 62, 15-27.	2.9	26
69	Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth. Molecular and Cellular Biology, 2015, 35, 2035-2050.	2.3	22
70	Peripheral Nervous System Progenitors Can Be Reprogrammed to Produce Myelinating Oligodendrocytes and Repair Brain Lesions. Journal of Neuroscience, 2011, 31, 6379-6391.	3.6	21
71	Neural Progenitors of the Postnatal and Adult Mouse Forebrain Retain the Ability to Self-Replicate, Form Neurospheres, and Undergo Multipotent Differentiation In Vivo. Stem Cells, 2009, 27, 714-723.	3.2	18
72	Baculovirus-based genome editing in primary cells. Plasmid, 2017, 90, 5-9.	1.4	18

VERDON TAYLOR

#	Article	IF	CITATIONS
73	Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential. Stem Cells Translational Medicine, 2015, 4, 1223-1233.	3.3	17
74	Molecular Biology of Axon–Clia Interactions in the Peripheral Nervous System1. Progress in Molecular Biology and Translational Science, 1997, 56, 225-256.	1.9	16
75	Interferon-Î ³ resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells. Developmental Cell, 2022, 57, 1847-1865.e9.	7.0	15
76	Extensive splice variation and localization of the EHK-1 receptor tyrosine kinase in adult human brain and glial tumors. Molecular Brain Research, 1997, 46, 17-24.	2.3	8
77	Neural Stem Cells: Disposable, End-State Glia?. Cell Stem Cell, 2011, 8, 464-465.	11.1	7
78	Hippocampal stem cells: so they are multipotent!. Journal of Molecular Cell Biology, 2011, 3, 270-272.	3.3	2
79	Fundamentals of Neurogenesis and Neural Stem Cell Development. , 2015, , 1-13.		1
80	Non-canonical post-transcriptional RNA regulation of neural stem cell potential. Brain Plasticity, 2017, 3, 111-116.	3.5	1
81	Notch2 Signaling Regulates Id4 and Cell Cycle Genes to Maintain Neural Stem Cell Quiescence in the Adult Hippocampus. SSRN Electronic Journal, 0, , .	0.4	1
82	miRNA-Dependent and Independent Functions of the Microprocessor in the Regulation of Neural Stem Cell Biology. , 2017, , 101-117.		0