
Weiqian Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8855010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene. Advanced Functional Materials, 2022, 32, 2109970.	7.8	33
2	Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) co-doped graphene-like carbon nanosheets. Chemical Engineering Journal, 2021, 420, 127601.	6.6	32
3	Rapid prototyping of heterostructured organic microelectronics using wax printing, filtration, and transfer. Journal of Materials Chemistry C, 2021, 9, 14596-14605.	2.7	1
4	A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Frontiers in Environmental Science, 2021, 9, .	1.5	63
5	Nitrogen-Doped MoS ₂ /Ti ₃ C ₂ T _{<i>X</i>} Heterostructures as Ultra-Efficient Alkaline HER Electrocatalysts. Inorganic Chemistry, 2021, 60, 9932-9940.	1.9	37
6	Immobilized Crosslinked Pectinase Preparation on Porous ZSM-5 Zeolites as Reusable Biocatalysts for Ultra-Efficient Hydrolysis of β-Glycosidic Bonds. Frontiers in Chemistry, 2021, 9, 677868.	1.8	5
7	Designed synthesis of WC-based nanocomposites as low-cost, efficient and stable electrocatalysts for the hydrogen evolution reaction. CrystEngComm, 2020, 22, 4580-4590.	1.3	25
8	Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils. International Journal of Biological Macromolecules, 2020, 151, 159-167.	3.6	39
9	Regenerated Bamboo-Derived Cellulose Fibers/RGO-Based Composite for High-Performance Supercapacitor Electrodes. IOP Conference Series: Materials Science and Engineering, 2020, 735, 012027.	0.3	2
10	Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose. Advanced Materials, 2019, 31, e1902977.	11.1	253
11	Layer-by-Layer Assembly of High-Performance Electroactive Composites Using a Multiple Charged Small Molecule. Langmuir, 2019, 35, 10367-10373.	1.6	5
12	A C-coated and Sb-doped SnO2 nanocompsite with high surface area and low charge transfer resistance as ultrahigh capacity lithium ion battery anode. Materials Today Energy, 2019, 13, 93-99.	2.5	14
13	Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nature Communications, 2019, 10, 2558.	5.8	166
14	Porous Aâ€&nO ₂ /rGO Nanocomposite via Annealing Treatment with Stable Highâ€Capacity as Anode of Lithiumâ€Ion Battery. ChemistrySelect, 2018, 3, 4303-4309.	0.7	9
15	Ultrahigh Oxygen Reduction Reaction Electrocatalytic Activity and Stability over Hierarchical Nanoporous N-doped Carbon. Scientific Reports, 2018, 8, 2863.	1.6	23
16	A Largeâ€Sized Reduced Graphene Oxide with Low Chargeâ€Transfer Resistance as a Highâ€Performance Electrode for a Nonflammable Highâ€Temperature Stable Ionicâ€Liquidâ€Based Supercapacitor. ChemSusChem, 2018, 11, 4026-4032.	3.6	11
17	Copperâ€Plated Paper for Highâ€Performance Lithiumâ€ion Batteries. Small, 2018, 14, e1803313.	5.2	18
18	Low content Pt nanoparticles anchored on N-doped reduced graphene oxide with high and stable electrocatalytic activity for oxygen reduction reaction. Scientific Reports, 2017, 7, 43352.	1.6	51

Weiqian Tian

#	Article	IF	CITATIONS
19	Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon, 2017, 119, 287-295.	5.4	79
20	Crosslinked Polypyrrole Grafted Reduced Graphene Oxide-Sulfur Nanocomposite Cathode for High Performance Li-S Battery. Electrochimica Acta, 2017, 235, 32-41.	2.6	50
21	Interlinked Porous Carbon Nanoflakes Derived from Hydrolyzate Residue during Cellulosic Bioethanol Production for Ultrahigh-Rate Supercapacitors in Nonaqueous Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 1297-1305.	3.2	45
22	Unusual Mesoporous Carbonaceous Matrix Loading with Sulfur as the Cathode of Lithium Sulfur Battery with Exceptionally Stable High Rate Performance. ACS Applied Materials & Interfaces, 2017, 9, 28366-28376.	4.0	19
23	Graphene-based carbon coated tin oxide as a lithium ion battery anode material with high performance. Journal of Materials Chemistry A, 2017, 5, 19136-19142.	5.2	35
24	Biomassâ€Derived Porous Carbon with Micropores and Small Mesopores for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2016, 22, 3239-3244.	1.7	117
25	3D Hierarchically Interconnected Porous Graphene Containing Sulfur for Stable High Rate Li–S Batteries. Energy Technology, 2016, 4, 625-632.	1.8	14
26	Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. Journal of Materials Chemistry A, 2016, 4, 8690-8699.	5.2	155
27	One-pot in situ chemical reduction of graphene oxide and recombination of sulphur as a cathode material for a Li–S battery. Journal of Materials Chemistry A, 2016, 4, 15140-15147.	5.2	17
28	Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material. Scientific Reports, 2016, 6, 26460.	1.6	32
29	Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. Journal of Materials Chemistry A, 2015, 3, 5656-5664.	5.2	367
30	Three-dimensional functionalized graphenes with systematical control over the interconnected pores and surface functional groups for high energy performance supercapacitors. Carbon, 2015, 85, 351-362.	5.4	83
31	Nitrogen and oxygen co-doped microporous carbons derived from theÂleaves of Euonymus japonicas as high performance supercapacitor electrode material. Microporous and Mesoporous Materials, 2015, 210, 1-9.	2.2	55
32	One-dimensional porous nanofibers of Co3O4 on the carbon matrix from human hair with superior lithium ion storage performance. Scientific Reports, 2015, 5, 12382.	1.6	65
33	Solvothermally induced α-Fe ₂ O ₃ /graphene nanocomposites with ultrahigh capacitance and excellent rate capability for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22005-22011.	5.2	71
34	Microporous carbon derived from Apricot shell as cathode material for lithium–sulfur battery. Microporous and Mesoporous Materials, 2015, 204, 235-241.	2.2	80
35	Superlow load of nanosized MnO on a porous carbon matrix from wood fibre with superior lithium ion storage performance. Journal of Materials Chemistry A, 2014, 2, 19975-19982.	5.2	83
36	Preparation, characterization and electrochemical properties of porous NiO/NPC composite nanosheets. Microporous and Mesoporous Materials, 2014, 200, 92-100.	2.2	13

Weiqian Tian

#	Article	IF	CITATIONS
37	Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Scientific Reports, 2014, 4, 5545.	1.6	168
38	Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor. Scientific Reports, 2014, 4, 4947.	1.6	49
39	Transformation of Jatropha oil into green diesel over a new heteropolyacid catalyst. Environmental Progress and Sustainable Energy, 2013, 32, 1240-1246.	1.3	14
40	A cleaner process for hydrocracking of jatropha oil into green diesel. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 221-227.	2.7	40
41	Hydroprocessing of Jatropha oil over NiMoCe/Al2O3 catalyst. International Journal of Hydrogen Energy, 2012, 37, 17731-17737.	3.8	65
42	Research on the Porous Structures and Properties of Composite Membranes of Polysulfone and Nanocrystalline Cellulose. Materials Science Forum, 0, 675-677, 391-394.	0.3	0