Weiqian Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8855010/publications.pdf

Version: 2024-02-01

42 papers

2,509 citations

218381 26 h-index 42 g-index

44 all docs 44 docs citations

44 times ranked 4057 citing authors

#	Article	lF	CITATIONS
1	Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. Journal of Materials Chemistry A, 2015, 3, 5656-5664.	5.2	367
2	Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose. Advanced Materials, 2019, 31, e1902977.	11.1	253
3	Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Scientific Reports, 2014, 4, 5545.	1.6	168
4	Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nature Communications, 2019, 10, 2558.	5.8	166
5	Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. Journal of Materials Chemistry A, 2016, 4, 8690-8699.	5.2	155
6	Biomassâ€Derived Porous Carbon with Micropores and Small Mesopores for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2016, 22, 3239-3244.	1.7	117
7	Superlow load of nanosized MnO on a porous carbon matrix from wood fibre with superior lithium ion storage performance. Journal of Materials Chemistry A, 2014, 2, 19975-19982.	5.2	83
8	Three-dimensional functionalized graphenes with systematical control over the interconnected pores and surface functional groups for high energy performance supercapacitors. Carbon, 2015, 85, 351-362.	5.4	83
9	Microporous carbon derived from Apricot shell as cathode material for lithium–sulfur battery. Microporous and Mesoporous Materials, 2015, 204, 235-241.	2.2	80
10	Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon, 2017, 119, 287-295.	5.4	79
11	Solvothermally induced α-Fe ₂ O ₃ /graphene nanocomposites with ultrahigh capacitance and excellent rate capability for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22005-22011.	5.2	71
12	Hydroprocessing of Jatropha oil over NiMoCe/Al2O3 catalyst. International Journal of Hydrogen Energy, 2012, 37, 17731-17737.	3.8	65
13	One-dimensional porous nanofibers of Co3O4 on the carbon matrix from human hair with superior lithium ion storage performance. Scientific Reports, 2015, 5, 12382.	1.6	65
14	A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Frontiers in Environmental Science, 2021, 9, .	1.5	63
15	Nitrogen and oxygen co-doped microporous carbons derived from theÂleaves of Euonymus japonicas as high performance supercapacitor electrode material. Microporous and Mesoporous Materials, 2015, 210, 1-9.	2.2	55
16	Low content Pt nanoparticles anchored on N-doped reduced graphene oxide with high and stable electrocatalytic activity for oxygen reduction reaction. Scientific Reports, 2017, 7, 43352.	1.6	51
17	Crosslinked Polypyrrole Grafted Reduced Graphene Oxide-Sulfur Nanocomposite Cathode for High Performance Li-S Battery. Electrochimica Acta, 2017, 235, 32-41.	2.6	50
18	Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor. Scientific Reports, 2014, 4, 4947.	1.6	49

#	Article	IF	CITATIONS
19	Interlinked Porous Carbon Nanoflakes Derived from Hydrolyzate Residue during Cellulosic Bioethanol Production for Ultrahigh-Rate Supercapacitors in Nonaqueous Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 1297-1305.	3.2	45
20	A cleaner process for hydrocracking of jatropha oil into green diesel. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 221-227.	2.7	40
21	Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils. International Journal of Biological Macromolecules, 2020, 151, 159-167.	3.6	39
22	Nitrogen-Doped MoS ₂ /Ti ₃ C ₂ T _{<i>X</i><} Heterostructures as Ultra-Efficient Alkaline HER Electrocatalysts. Inorganic Chemistry, 2021, 60, 9932-9940.	1.9	37
23	Graphene-based carbon coated tin oxide as a lithium ion battery anode material with high performance. Journal of Materials Chemistry A, 2017, 5, 19136-19142.	5.2	35
24	Highâ€Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene. Advanced Functional Materials, 2022, 32, 2109970.	7.8	33
25	Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material. Scientific Reports, 2016, 6, 26460.	1.6	32
26	Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) co-doped graphene-like carbon nanosheets. Chemical Engineering Journal, 2021, 420, 127601.	6.6	32
27	Designed synthesis of WC-based nanocomposites as low-cost, efficient and stable electrocatalysts for the hydrogen evolution reaction. CrystEngComm, 2020, 22, 4580-4590.	1.3	25
28	Ultrahigh Oxygen Reduction Reaction Electrocatalytic Activity and Stability over Hierarchical Nanoporous N-doped Carbon. Scientific Reports, 2018, 8, 2863.	1.6	23
29	Unusual Mesoporous Carbonaceous Matrix Loading with Sulfur as the Cathode of Lithium Sulfur Battery with Exceptionally Stable High Rate Performance. ACS Applied Materials & amp; Interfaces, 2017, 9, 28366-28376.	4.0	19
30	Copperâ€Plated Paper for Highâ€Performance Lithiumâ€Ion Batteries. Small, 2018, 14, e1803313.	5.2	18
31	One-pot in situ chemical reduction of graphene oxide and recombination of sulphur as a cathode material for a Li–S battery. Journal of Materials Chemistry A, 2016, 4, 15140-15147.	5.2	17
32	Transformation of Jatropha oil into green diesel over a new heteropolyacid catalyst. Environmental Progress and Sustainable Energy, 2013, 32, 1240-1246.	1.3	14
33	3D Hierarchically Interconnected Porous Graphene Containing Sulfur for Stable High Rate Li–S Batteries. Energy Technology, 2016, 4, 625-632.	1.8	14
34	A C-coated and Sb-doped SnO2 nanocompsite with high surface area and low charge transfer resistance as ultrahigh capacity lithium ion battery anode. Materials Today Energy, 2019, 13, 93-99.	2.5	14
35	Preparation, characterization and electrochemical properties of porous NiO/NPC composite nanosheets. Microporous and Mesoporous Materials, 2014, 200, 92-100.	2.2	13
36	A Largeâ€Sized Reduced Graphene Oxide with Low Chargeâ€Transfer Resistance as a Highâ€Performance Electrode for a Nonflammable Highâ€Temperature Stable Ionicâ€Liquidâ€Based Supercapacitor. ChemSusChem, 2018, 11, 4026-4032.	3.6	11

#	Article	IF	CITATIONS
37	Porous Aâ€SnO ₂ /rGO Nanocomposite via Annealing Treatment with Stable Highâ€Capacity as Anode of Lithiumâ€lon Battery. ChemistrySelect, 2018, 3, 4303-4309.	0.7	9
38	Layer-by-Layer Assembly of High-Performance Electroactive Composites Using a Multiple Charged Small Molecule. Langmuir, 2019, 35, 10367-10373.	1.6	5
39	Immobilized Crosslinked Pectinase Preparation on Porous ZSM-5 Zeolites as Reusable Biocatalysts for Ultra-Efficient Hydrolysis of β-Glycosidic Bonds. Frontiers in Chemistry, 2021, 9, 677868.	1.8	5
40	Regenerated Bamboo-Derived Cellulose Fibers/RGO-Based Composite for High-Performance Supercapacitor Electrodes. IOP Conference Series: Materials Science and Engineering, 2020, 735, 012027.	0.3	2
41	Rapid prototyping of heterostructured organic microelectronics using wax printing, filtration, and transfer. Journal of Materials Chemistry C, 2021, 9, 14596-14605.	2.7	1
42	Research on the Porous Structures and Properties of Composite Membranes of Polysulfone and Nanocrystalline Cellulose. Materials Science Forum, 0, 675-677, 391-394.	0.3	0