Erica A H Smithwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8855008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Landscape-Scale Forest Reorganization Following Insect Invasion and Harvest Under Future Climate Change Scenarios. Ecosystems, 2021, 24, 1756-1774.	1.6	6
2	Interactions between landscape and local factors inform spatial action planning in post-fire forest environments. Landscape Ecology, 2021, 36, 3523-3537.	1.9	2
3	Forest pattern, not just amount, influences dietary quality in five African countries. Global Food Security, 2020, 25, 100331.	4.0	22
4	The landscape-scale drivers of herbivore assemblage distribution on the central basalt plains of Kruger National Park. Journal of Tropical Ecology, 2020, 36, 13-28.	0.5	1
5	Hunter and Non-Hunter Perceptions of Costs, Benefits, and Likelihood of Outcomes of Prescribed Fire in the Mid-Atlantic Region. Society and Natural Resources, 2020, 33, 1321-1327.	0.9	0
6	Seed source pattern and terrain have scale-dependent effects on post-fire tree recovery. Landscape Ecology, 2020, 35, 1945-1959.	1.9	14
7	Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21968-21977.	3.3	110
8	Patch-scale selection patterns of grazing herbivores in the central basalt plains of Kruger National Park. African Journal of Range and Forage Science, 2020, 37, 199-213.	0.6	1
9	Conceptual Links between Landscape Diversity and Diet Diversity: A Roadmap for Transdisciplinary Research. BioScience, 2020, 70, 563-575.	2.2	28
10	Complex interactions among successional trajectories and climate govern spatial resilience after severe windstorms in central Wisconsin, USA. Landscape Ecology, 2019, 34, 2897-2915.	1.9	12
11	Estimating Root Zone Soil Moisture Across the Eastern United States with Passive Microwave Satellite Data and a Simple Hydrologic Model. Remote Sensing, 2019, 11, 2013.	1.8	15
12	Carbon stocks and biodiversity of coastal lowland forests in South Africa: implications for aligning sustainable development and carbon mitigation initiatives. Carbon Management, 2019, 10, 349-360.	1.2	10
13	Fineâ€scale spatial homogenization of microbial habitats: a multivariate index of headwater wetland complex condition. Ecological Applications, 2019, 29, e01816.	1.8	2
14	Exploring invasibility with species distribution modeling: How does fire promote cheatgrass (<i>Bromus tectorum</i>) invasion within lower montane forests?. Diversity and Distributions, 2018, 24, 1308-1320.	1.9	20
15	A regional assessment of white-tailed deer effects on plant invasion. AoB PLANTS, 2018, 10, plx047.	1.2	42
16	Interactive Videos Enhance Learning about Socio-Ecological Systems. Journal of Geography, 2018, 117, 40-49.	1.8	3
17	Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S PLoS ONE, 2018, 13, e0205296.	1.1	54
18	A decade of colonization: the spread of the Asian tiger mosquito in Pennsylvania and implications for disease risk. Journal of Vector Ecology, 2017, 42, 3-12.	0.5	6

ERICA A H SMITHWICK

#	Article	IF	CITATIONS
19	Landscape Fragmentation as a Risk Factor for Buruli Ulcer Disease in Ghana. American Journal of Tropical Medicine and Hygiene, 2016, 95, 63-69.	0.6	11
20	Situated knowledge of pathogenic landscapes in Ghana: Understanding the emergence of Buruli ulcer through qualitative analysis. Social Science and Medicine, 2016, 150, 160-171.	1.8	17
21	Deer feeding selectivity for invasive plants. Biological Invasions, 2016, 18, 1247-1263.	1.2	47
22	Buruli Ulcer Disease and Its Association with Land Cover in Southwestern Ghana. PLoS Neglected Tropical Diseases, 2015, 9, e0003840.	1.3	27
23	Representing climate, disturbance, and vegetation interactions in landscape models. Ecological Modelling, 2015, 309-310, 33-47.	1.2	83
24	Influence of protected areas on malaria prevalence in Sub-Saharan Africa. Applied Geography, 2015, 64, 35-45.	1.7	1
25	Chemistry of natural waters and its relation to Buruli ulcer in Ghana. Journal of Hydrology: Regional Studies, 2015, 3, 457-472.	1.0	4
26	Exploring Interactions Among Multiple Disturbance Agents in Forest Landscapes: Simulating Effects of Fire, Beetles, and Disease Under Climate Change. , 2015, , 201-231.		13
27	Sensitivity of four ecological models to adjustments in fine root turnover rate. Ecological Modelling, 2015, 297, 107-117.	1.2	38
28	Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales. BioScience, 2014, 64, 105-116.	2.2	80
29	Improving the representation of roots in terrestrial models. Ecological Modelling, 2014, 291, 193-204.	1.2	101
30	Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology, 2014, 95, 2224-2235.	1.5	136
31	Root stress and nitrogen deposition: consequences and research priorities. New Phytologist, 2013, 197, 712-719.	3.5	65
32	Regional scale patterns of fine root lifespan and turnover under current and future climate. Global Change Biology, 2013, 19, 1697-1708.	4.2	57
33	Contours of Risk: Spatializing Human Behaviors to Understand Disease Dynamics in Changing Landscapes. EcoHealth, 2012, 9, 251-255.	0.9	14
34	Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 2012, 195, 823-831.	3.5	350
35	Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance. PLoS ONE, 2012, 7, e50597.	1.1	27
36	Variation in Aboveground Cover Influences Soil Nitrogen Availability at Fine Spatial Scales Following Severe Fire in Subalpine Conifer Forests. Ecosystems, 2011, 14, 1081-1095.	1.6	25

#	Article	IF	CITATIONS
37	The Wetland Disturbance Index: Links with Soil and Water Nitrate Concentrations. Wetlands, 2011, 31, 853-863.	0.7	8
38	Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13165-13170.	3.3	536
39	Pyrogeography and Biogeochemical Resilience. Ecological Studies, 2011, , 143-163.	0.4	6
40	Organized Oral Session 34. Disturbance Ecology, Biogeochemistry and Resilience: Three Decades of Inquiry. Bulletin of the Ecological Society of America, 2010, 91, 80-93.	0.2	0
41	Variation in foliar nitrogen and aboveground net primary production in young postfire lodgepole pine. Canadian Journal of Forest Research, 2009, 39, 1024-1035.	0.8	24
42	Long-Term Nitrogen Storage and Soil Nitrogen Availability in Post-Fire Lodgepole Pine Ecosystems. Ecosystems, 2009, 12, 792-806.	1.6	48
43	Influence of coarse wood and pine saplings on nitrogen mineralization and microbial communities in young post-fire Pinus contorta. Forest Ecology and Management, 2008, 256, 59-67.	1.4	18
44	Landscape heterogeneity following large fires: insights from Yellowstone National Park, USA. International Journal of Wildland Fire, 2008, 17, 742.	1.0	83
45	Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4782-4789.	3.3	134
46	Changing Temporal Patterns of Forest Carbon Stores and Net Ecosystem Carbon Balance: the Stand to Landscape Transformation. Landscape Ecology, 2007, 22, 77-94.	1.9	41
47	Role of microbial communities in mediating ecosystem response to disturbance. Plant and Soil, 2006, 289, 1-3.	1.8	5
48	Variation in NH4+ mineralization and microbial communities with stand age in lodgepole pine (Pinus) Tj ETQq0 (0 0 rgBT /0 4 <u>92</u>	Dverlock 10 Tf
49	Postfire Soil N Cycling in Northern Conifer Forests Affected by Severe, Stand-Replacing Wildfires. Ecosystems, 2005, 8, 163-181.	1.6	165
50	Spatial Heterogeneity and Soil Nitrogen Dynamics in a Burned Black Spruce Forest Stand: Distinct Controls at Different Scales. Biogeochemistry, 2005, 76, 517-537.	1.7	46
51	What the soil reveals: Potential total ecosystem C stores of the Pacific Northwest region, USA. Forest Ecology and Management, 2005, 220, 270-283.	1.4	24
52	Modeling multiscale effects of light limitations and edge-induced mortality on carbon stores in forest landscapes. Landscape Ecology, 2003, 18, 701-721.	1.9	29

53	POTENTIAL UPPER BOUNDS OF CARBON STORES IN FORESTS OF THE PACIFIC NORTHWEST. , 2002, 12, 1303-1317.	209
----	---	-----