Clair Baldock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8855004/publications.pdf

Version: 2024-02-01

109137 118652 4,316 97 35 62 citations h-index g-index papers 102 102 102 4806 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Latent TGF \hat{I}^2 complexes are transglutaminase cross-linked to fibrillin to facilitate TGF \hat{I}^2 activation. Matrix Biology, 2022, 107, 24-39.	1.5	9
2	Elastic Fibre Proteins in Elastogenesis and Wound Healing. International Journal of Molecular Sciences, 2022, 23, 4087.	1.8	12
3	Proteolysis of fibrillin-2 microfibrils is essential for normal skeletal development. ELife, 2022, 11, .	2.8	13
4	Modelling the structure of Short Gastrulation and generation of a toolkit for studying its function in $\langle i \rangle$ Drosophila $\langle i \rangle$. Biology Open, 2022, 11, .	0.6	1
5	Structure of PLA2R reveals presentation of the dominant membranous nephropathy epitope and an immunogenic patch. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
6	Dual role of the active site  lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development. FEBS Journal, 2021, 288, 175-189.	2.2	15
7	A new MMPâ€mediated prodomain cleavage mechanism to activate bone morphogenetic proteins from the extracellular matrix. FASEB Journal, 2021, 35, e21353.	0.2	10
8	Tropoelastin and Elastin Assembly. Frontiers in Bioengineering and Biotechnology, 2021, 9, 643110.	2.0	71
9	BMP antagonists in tissue development and disease. Matrix Biology Plus, 2021, 11, 100071.	1.9	20
10	Autosomal Recessive Cutis Laxa 1C Mutations Disrupt the Structure and Interactions of Latent $TGF\hat{l}^2$ Binding Protein-4. Frontiers in Genetics, 2021, 12, 706662.	1.1	3
11	Structural studies of elastic fibre and microfibrillar proteins. Matrix Biology Plus, 2021, 12, 100078.	1.9	2
12	Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly. Journal of Molecular Biology, 2020, 432, 5736-5751.	2.0	17
13	Delineation of a new fibrillino-2-pathy with evidence for a role of FBN2 in the pathogenesis of carpal tunnel syndrome. Journal of Medical Genetics, 2020, 58, jmedgenet-2020-107085.	1.5	4
14	Inter- \hat{l} ±-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation. Journal of Biological Chemistry, 2020, 295, 5278-5291.	1.6	18
15	The Dual PDZ Domain from Postsynaptic Density Protein 95 Forms a Scaffold with Peptide Ligand. Biophysical Journal, 2020, 119, 667-689.	0.2	9
16	Molecular Cloning, Lentiviral Transduction, and Expression of Recombinant ADAMTSL2 and ADAMTSL4. Methods in Molecular Biology, 2020, 2043, 137-155.	0.4	0
17	Purification of Recombinant ADAMTSL2. Methods in Molecular Biology, 2020, 2043, 157-172.	0.4	O
18	Internal cleavage and synergy with twisted gastrulation enhance BMP inhibition by BMPER. Matrix Biology, 2019, 77, 73-86.	1.5	13

#	Article	IF	Citations
19	Fibrillin microfibrils and elastic fibre proteins: Functional interactions and extracellular regulation of growth factors. Seminars in Cell and Developmental Biology, 2019, 89, 109-117.	2.3	100
20	The C-terminal dimerization domain of the respiratory mucin MUC5B functions in mucin stability and intracellular packaging before secretion. Journal of Biological Chemistry, 2019, 294, 17105-17116.	1.6	19
21	Lysyl oxidaseâ€like 2 (LOXL2)â€mediated crossâ€linking of tropoelastin. FASEB Journal, 2019, 33, 5468-5481.	0.2	53
22	The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biology, 2019, 84, 17-30.	1.5	89
23	Tropoelastin is a Flexible Molecule that Retains its Canonical Shape. Macromolecular Bioscience, 2019, 19, 1800250.	2.1	19
24	Tropoelastin Implants That Accelerate Wound Repair. Advanced Healthcare Materials, 2018, 7, e1701206.	3.9	29
25	Structural and compositional diversity of fibrillin microfibrils in human tissues. Journal of Biological Chemistry, 2018, 293, 5117-5133.	1.6	54
26	Unraveling the Mechanism of Procollagen C-Proteinase Enhancer. Structure, 2018, 26, 1299-1301.	1.6	3
27	Molecular model of human tropoelastin and implications of associated mutations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7338-7343.	3.3	35
28	ADAMTS10-mediated tissue disruption in Weill–Marchesani syndrome. Human Molecular Genetics, 2018, 27, 3675-3687.	1.4	46
29	Multiscale Imaging Reveals the Hierarchical Organization of Fibrillin Microfibrils. Journal of Molecular Biology, 2018, 430, 4142-4155.	2.0	12
30	The herpes viral transcription factor ICP4 forms a novel DNA recognition complex. Nucleic Acids Research, 2017, 45, 8064-8078.	6.5	23
31	Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomaterialia, 2017, 52, 21-32.	4.1	26
32	The open architecture of HD-PTP phosphatase provides new insights into the mechanism of regulation of ESCRT function. Scientific Reports, 2017, 7, 9151.	1.6	22
33	Coarse-Grained Modeling of Antibodies from Small-Angle Scattering Profiles. Journal of Physical Chemistry B, 2017, 121, 8276-8290.	1.2	30
34	Targeted Modulation of Tropoelastin Structure and Assembly. ACS Biomaterials Science and Engineering, 2017, 3, 2832-2844.	2.6	16
35	Heterogeneity of Collagen VI Microfibrils. Journal of Biological Chemistry, 2016, 291, 5247-5258.	1.6	24
36	Extracellular Regulation of Bone Morphogenetic Protein Activity by the Microfibril Component Fibrillin-1. Journal of Biological Chemistry, 2016, 291, 12732-12746.	1.6	72

#	Article	IF	Citations
37	Mammalian tolloid proteinases: role in growth factor signalling. FEBS Letters, 2016, 590, 2398-2407.	1.3	9
38	Subunit Arrangement in GpsB, a Regulator of Cell Wall Biosynthesis. Microbial Drug Resistance, 2016, 22, 446-460.	0.9	26
39	Structural analysis of X-linked retinoschisis mutations reveals distinct classes which differentially effect retinoschisin function. Human Molecular Genetics, 2016, 25, ddw345.	1.4	16
40	Independent multimerization of Latent TGF \hat{l}^2 Binding Protein-1 stabilized by cross-linking and enhanced by heparan sulfate. Scientific Reports, 2016, 6, 34347.	1.6	34
41	Diversity between mammalian tolloid proteinases: Oligomerisation and non-catalytic domains influence activity and specificity. Scientific Reports, 2016, 6, 21456.	1.6	8
42	Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly. Science Advances, 2016, 2, e1501145.	4.7	43
43	Structural characterization of twisted gastrulation provides insights into opposing functions on the BMP signalling pathway. Matrix Biology, 2016, 55, 49-62.	1.5	15
44	The role of chordin fragments generated by partial tolloid cleavage in regulating BMP activity. Biochemical Society Transactions, 2015, 43, 795-800.	1.6	15
45	A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues. Redox Biology, 2015, 5, 101-113.	3.9	45
46	The Cryo-EM structure of the CorA channel from Methanocaldococcus jannaschii in low magnesium conditions. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2206-2215.	1.4	12
47	Cadherin flexibility provides a key difference between desmosomes and adherens junctions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5395-5400.	3.3	37
48	Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein. Nature Communications, 2015, 6, 7271.	5.8	52
49	Synthetic enzyme-substrate tethering obviates the Tolloid-ECM interaction during Drosophila BMP gradient formation. ELife, 2015, 4, .	2.8	16
50	A Negatively Charged Residue Stabilizes the Tropoelastin N-terminal Region for Elastic Fiber Assembly. Journal of Biological Chemistry, 2014, 289, 34815-34826.	1.6	22
51	Assembly of the Respiratory Mucin MUC5B. Journal of Biological Chemistry, 2014, 289, 16409-16420.	1.6	76
52	Nanoscale structure of the BMP antagonist chordin supports cooperative BMP binding. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13063-13068.	3.3	40
53	Tropoelastin bridge region positions the cell-interactive C terminus and contributes to elastic fiber assembly. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2878-2883.	3.3	51
54	Fibrillin-1 Mutations Causing Weill-Marchesani Syndrome and Acromicric and Geleophysic Dysplasias Disrupt Heparan Sulfate Interactions. PLoS ONE, 2012, 7, e48634.	1.1	54

#	Article	IF	Citations
55	Deriving the ultrastructure of α-crustacyanin usingÂlower-resolution structural and biophysical methods. Journal of Synchrotron Radiation, 2011, 18, 79-83.	1.0	12
56	Collagen VI, Conformation of A-domain Arrays and Microfibril Architecture. Journal of Biological Chemistry, 2011, 286, 40266-40275.	1.6	21
57	Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4322-4327.	3.3	170
58	Structural and functional evidence for a substrate exclusion mechanism in mammalian tolloid likeâ€1 (TLLâ€1) proteinase. FEBS Letters, 2010, 584, 657-661.	1.3	20
59	Order within disorder: Aggrecan chondroitin sulphateâ€attachment region provides new structural insights into protein sequences classified as disordered. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3317-3327.	1.5	12
60	Structural Effects of Fibulin 5 Missense Mutations Associated with Age-Related Macular Degeneration and Cutis Laxa., 2010, 51, 2356.		25
61	Assembly of fibrillin microfibrils governs extracellular deposition of latent TGFβ. Journal of Cell Science, 2010, 123, 3006-3018.	1.2	146
62	The Angiogenic Inhibitor Long Pentraxin PTX3 Forms an Asymmetric Octamer with Two Binding Sites for FGF2. Journal of Biological Chemistry, 2010, 285, 17681-17692.	1.6	106
63	Collagen VI Microfibril Formation Is Abolished by an α2(VI) von Willebrand Factor Type A Domain Mutation in a Patient with Ullrich Congenital Muscular Dystrophy. Journal of Biological Chemistry, 2010, 285, 33567-33576.	1.6	18
64	Order in Disorder: Aggrecan CS Region Predicts a New Class of Protein Structure. FASEB Journal, 2010, 24, 684.9.	0.2	0
65	Role of dimerization and substrate exclusion in the regulation of bone morphogenetic protein-1 and mammalian tolloid. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8561-8566.	3.3	40
66	Fibulin 5 Forms a Compact Dimer in Physiological Solutions. Journal of Biological Chemistry, 2009, 284, 25938-25943.	1.6	11
67	Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5. Journal of Biological Chemistry, 2009, 284, 24553-24567.	1.6	98
68	Defining Elastic Fiber Interactions by Molecular Fishing. Molecular and Cellular Proteomics, 2009, 8, 2715-2732.	2.5	27
69	Missense mutations that cause Van der Woude syndrome and popliteal pterygium syndrome affect the DNA-binding and transcriptional activation functions of IRF6. Human Molecular Genetics, 2009, 18, 535-545.	1.4	75
70	Fibrillin Microfibrils: A Key Role for the Interbead Region in Elasticity. Journal of Molecular Biology, 2009, 388, 168-179.	2.0	36
71	A Role for Soluble <i>N</i> -Ethylmaleimide-sensitive Factor Attachment Protein Receptor Complex Dimerization during Neurosecretion. Molecular Biology of the Cell, 2008, 19, 3379-3389.	0.9	12
72	Collagens at a glance. Journal of Cell Science, 2007, 120, 1955-1958.	1.2	653

#	Article	IF	Citations
73	The morphology of adsorbed extracellular matrix assemblies is critically dependent on solution calcium concentration. Matrix Biology, 2007, 26, 156-166.	1.5	12
74	Reprint of "Structural correlation between collagen VI microfibrils and collagen VI banded aggregates―[J. Struct. Biol. 154 (2006) 312–326]. Journal of Structural Biology, 2006, 155, 379-393.	1.3	0
75	Tissue specific differences in fibrillin microfibrils analysed using single particle image analysis. Journal of Structural Biology, 2006, 155, 285-293.	1.3	12
76	Structural correlation between collagen VI microfibrils and collagen VI banded aggregates. Journal of Structural Biology, 2006, 154, 312-326.	1.3	35
77	Nanostructure of fibrillin-1 reveals compact conformation of EGF arrays and mechanism for extensibility. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11922-11927.	3.3	56
78	Marfan Syndrome-causing Mutations in Fibrillin-1 Result in Gross Morphological Alterations and Highlight the Structural Importance of the Second Hybrid Domain. Journal of Biological Chemistry, 2006, 281, 31854-31862.	1.6	25
79	Marfan Syndrome-causing Mutations in Fibrillin-1 Result in Gross Morphological Alterations and Highlight the Structural Importance of the Second Hybrid Domain. Journal of Biological Chemistry, 2006, 281, 31854-31862.	1.6	7
80	Homotypic Fibrillin-1 Interactions in Microfibril Assembly. Journal of Biological Chemistry, 2005, 280, 5013-5021.	1.6	71
81	Fibrillin-1 Interactions with Heparin. Journal of Biological Chemistry, 2005, 280, 30526-30537.	1.6	88
82	Fibrillin Microfibrils. Advances in Protein Chemistry, 2005, 70, 405-436.	4.4	118
83	Evidence for the Intramolecular Pleating Model of Fibrillin Microfibril Organisation from Single Particle Image Analysis. Journal of Molecular Biology, 2005, 349, 73-85.	2.0	20
84	Organization and Biomechanical Properties of Fibrillin Microfibrils., 2004,, 143-160.		0
85	The Supramolecular Organization of Collagen VI Microfibrils. Journal of Molecular Biology, 2003, 330, 297-307.	2.0	96
86	Fibrillin Microfibrils are Stiff Reinforcing Fibres in Compliant Tissues. Journal of Molecular Biology, 2003, 332, 183-193.	2.0	134
87	Raman Microscopy and X-ray Diffraction, a Combined Study of Fibrillin-rich Microfibrillar Elasticity. Journal of Biological Chemistry, 2003, 278, 41189-41197.	1.6	26
88	Fibrillin: From Microfibril Assembly to Biomechanical Function., 2003,, 94-114.		2
89	Fibrillin: from microfibril assembly to biomechanical function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 207-217.	1.8	102
90	X-Ray Crystallographic Studies on Butyryl-ACP Reveal Flexibility of the Structure around a Putative Acyl Chain Binding Site. Structure, 2002, 10, 825-835.	1.6	114

#	Article	IF	CITATIONS
91	Crystallization and preliminary X-ray crystallographic studies on acyl-(acyl carrier protein) fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 330-332.	2.5	11
92	A study of the structure-activity relationship for diazaborine inhibition of Escherichia coli enoyl-ACP reductase. Journal of Molecular Biology, 2001, 309, 171-180.	2.0	65
93	The Supramolecular Organization of Fibrillin-Rich Microfibrils. Journal of Cell Biology, 2001, 152, 1045-1056.	2.3	146
94	The Role of the C1 and C2 A-domains in Type VI Collagen Assembly. Journal of Biological Chemistry, 2001, 276, 7422-7430.	1.6	35
95	Molecular genetic analysis of enoyl-acyl carrier protein reductase inhibition by diazaborine. Molecular Microbiology, 1999, 31, 443-450.	1.2	22
96	The X-ray structure of Escherichia coli enoyl reductase with bound NAD + at 2.1 Ã resolution 1 1Edited by R. Huber. Journal of Molecular Biology, 1998, 284, 1529-1546.	2.0	51
97	Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase. Structure, 1995, 3, 927-938.	1.6	110