
D D Baldocchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8854686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 2001, 82, 2415-2434.	1.7	3,018
2	On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11, 1424-1439.	4.2	2,778
3	Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 2010, 329, 834-838.	6.0	2,056
4	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	4.2	2,002
5	Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 2003, 9, 479-492.	4.2	1,937
6	Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113, 223-243.	1.9	1,877
7	Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107, 43-69.	1.9	1,579
8	Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 2006, 196, 483-493.	1.2	1,572
9	Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 2002, 113, 97-120.	1.9	1,133
10	Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods. Ecology, 1988, 69, 1331-1340.	1.5	1,104
11	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
12	'Breathing' of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 2008, 56, 1.	0.3	966
13	Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 2006, 9, 1041-1050.	1.6	904
14	Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biology, 2009, 15, 2335-2359.	4.2	871
15	Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 2008, 112, 901-919.	4.6	788
16	The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment, 1999, 22, 715-740.	2.8	696
17	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	2.4	646
18	A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 2001, 106, 153-168.	1.9	626

#	Article	IF	CITATIONS
19	A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data. Remote Sensing of Environment, 1999, 70, 108-127.	4.6	609
20	Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002, 113, 53-74.	1.9	606
21	A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, and Soil Pollution, 1987, 36, 311-330.	1.1	577
22	Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis. Science, 2003, 299, 2035-2038.	6.0	566
23	Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1908-1925.	2.7	562
24	The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 2017, 53, 2618-2626.	1.7	552
25	The Boreal Ecosystem–Atmosphere Study (BOREAS): An Overview and Early Results from the 1994 Field Year. Bulletin of the American Meteorological Society, 1995, 76, 1549-1577.	1.7	547
26	Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 2007, 143, 189-207.	1.9	547
27	Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review. Bulletin of the American Meteorological Society, 2000, 81, 1537-1575.	1.7	532
28	Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research, 2002, 107, ACL 2-1-ACL 2-23.	3.3	518
29	Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 2004, 123, 79-96.	1.9	515
30	How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agricultural and Forest Meteorology, 2004, 123, 13-39.	1.9	504
31	Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001, 107, 71-77.	1.9	493
32	Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology, 2000, 6, 211-223.	4.2	488
33	CO2 Fluxes over Plant Canopies and Solar Radiation: A Review. Advances in Ecological Research, 1995, 26, 1-68.	1.4	460
34	Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus) Tj ETQq0 0 0 rg	3T (Qverlo	ck 10 Tf 50 1
35	BOREAS in 1997: Experiment overview, scientific results, and future directions. Journal of Geophysical	3.3	436

36	On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. Agricultural and Forest	1.	.9	432
	Meteorology, 1998, 90, 1-25.			

#	Article	IF	CITATIONS
37	Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data. Photogrammetric Engineering and Remote Sensing, 2006, 72, 923-932.	0.3	431
38	Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology, 2005, 11, 1298-1304.	4.2	430
39	Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 2007, 13, 2018-2035.	4.2	423
40	Temporal and amongâ€site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 2009, 23, .	1.9	422
41	A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmospheric Environment, 1987, 21, 91-101.	1.1	420
42	Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology, 2000, 100, 1-18.	1.9	419
43	Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biology, 1996, 2, 159-168.	4.2	382
44	How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	380
45	CLIMATE: The Terrestrial Carbon Cycle: Implications for the Kyoto Protocol. Science, 1998, 280, 1393-1394.	6.0	378
46	Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – the state and future of the eddy covariance method. Global Change Biology, 2014, 20, 3600-3609.	4.2	377
47	Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology, 2000, 20, 565-578.	1.4	365
48	Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Plant, Cell and Environment, 1995, 18, 1157-1173.	2.8	364
49	A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment, 2008, 112, 1633-1646.	4.6	364
50	Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agricultural and Forest Meteorology, 2007, 147, 157-171.	1.9	356
51	Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biology, 2000, 6, 84-115.	4.2	346
52	Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	345
53	Correction Of Eddy-Covariance Measurements Incorporating Both Advective Effects And Density Fluxes. Boundary-Layer Meteorology, 2000, 97, 487-511.	1.2	343
54	Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5880-5885.	3.3	340

#	Article	IF	CITATIONS
55	Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant, Cell and Environment, 1997, 20, 1108-1122.	2.8	329
56	Protecting climate with forests. Environmental Research Letters, 2008, 3, 044006.	2.2	313
57	Biophysical considerations in forestry for climate protection. Frontiers in Ecology and the Environment, 2011, 9, 174-182.	1.9	301
58	Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling, 2001, 142, 155-184.	1.2	296
59	Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agricultural and Forest Meteorology, 2003, 118, 207-220.	1.9	285
60	Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. Journal of Geophysical Research, 1997, 102, 28977-28985.	3.3	277
61	A comparison of six methods for measuring soil-surface carbon dioxide fluxes. Journal of Geophysical Research, 1997, 102, 28771-28777.	3.3	274
62	Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology, 1996, 2, 183-197.	4.2	273
63	On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. Journal of Geophysical Research, 2006, 111, .	3.3	267
64	What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment, 2019, 223, 95-114.	4.6	266
65	Reduction in carbon uptake during turn of the century drought in western North America. Nature Geoscience, 2012, 5, 551-556.	5.4	263
66	Spatial–temporal variation in soil respiration in an oak–grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 2005, 73, 183-207.	1.7	259
67	On Measuring Net Ecosystem Carbon Exchange Over Tall Vegetation on Complex Terrain. Boundary-Layer Meteorology, 2000, 96, 257-291.	1.2	258
68	Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agricultural and Forest Meteorology, 2018, 249, 520-533.	1.9	257
69	Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13697-13702.	3.3	255
70	Climate and vegetation controls on boreal zone energy exchange. Global Change Biology, 2000, 6, 69-83.	4.2	254
71	Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resources Research, 2012, 48, .	1.7	254
72	A comparison of direct and indirect methods for estimating forest canopy leaf area. Agricultural and Forest Meteorology, 1991, 57, 107-128.	1.9	251

#	Article	IF	CITATIONS
73	Leaf age affects the seasonal pattern of photosynthetic capacityand net ecosystem exchange of carbon in a deciduous forest. Plant, Cell and Environment, 2001, 24, 571-583.	2.8	247
74	Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agricultural and Forest Meteorology, 1997, 83, 147-170.	1.9	243
75	Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology, 2005, 128, 179-197.	1.9	241
76	How to quantify tree leaf area index in an open savanna ecosystem: A multi-instrument and multi-model approach. Agricultural and Forest Meteorology, 2010, 150, 63-76.	1.9	240
77	Agricultural peatland restoration: effects of landâ€use change on greenhouse gas (CO ₂) Tj ETQq1 1 750-765.	0.784314 4.2	rgBT /Ov€ 235
78	Filtering Airborne Laser Scanning Data with Morphological Methods. Photogrammetric Engineering and Remote Sensing, 2007, 73, 175-185.	0.3	233
79	Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. Journal of Geophysical Research, 1997, 102, 28939-28951.	3.3	225
80	Commentary: Carbon Metabolism of the Terrestrial Biosphere: A Multitechnique Approach for Improved Understanding. Ecosystems, 2000, 3, 115-130.	1.6	225
81	OAK FOREST CARBON AND WATER SIMULATIONS: MODEL INTERCOMPARISONS AND EVALUATIONS AGAINST INDEPENDENT DATA. Ecological Monographs, 2004, 74, 443-489.	2.4	225
82	Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 2008, 148, 1827-1847.	1.9	221
83	ECOSTRESS: NASA's Next Generation Mission to Measure Evapotranspiration From the International Space Station. Water Resources Research, 2020, 56, e2019WR026058.	1.7	220
84	How eddy covariance flux measurements have contributed to our understanding of <i>Global Change Biology</i> . Global Change Biology, 2020, 26, 242-260.	4.2	216
85	Energy and CO2 flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Physiology, 1996, 16, 5-16.	1.4	211
86	Turbulence structure in a deciduous forest. Boundary-Layer Meteorology, 1988, 43, 345-364.	1.2	210
87	A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sensing of Environment, 2010, 114, 576-591.	4.6	210
88	How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forestan assessment with the biophysical model CANOAK. Tree Physiology, 2002, 22, 1065-1077.	1.4	204
89	What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 2007, 27, 597-610.	1.4	204
90	Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. Journal of Geophysical Research, 2008, 113, .	3.3	204

#	Article	lF	CITATIONS
91	Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Boundary-Layer Meteorology, 1986, 36, 71-91.	1.2	201
92	Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization. Plant, Cell and Environment, 1995, 18, 1146-1156.	2.8	199
93	A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: II. CO2 exchange and water use efficiency. Agricultural and Forest Meteorology, 1994, 67, 291-321.	1.9	197
94	On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. Agricultural and Forest Meteorology, 2014, 184, 82-97.	1.9	196
95	Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras. Remote Sensing of Environment, 2012, 126, 116-125.	4.6	195
96	On the correct estimation of effective leaf area index: Does it reveal information on clumping effects?. Agricultural and Forest Meteorology, 2010, 150, 463-472.	1.9	186
97	Flux Footprints Within and Over Forest Canopies. Boundary-Layer Meteorology, 1997, 85, 273-292.	1.2	181
98	Trace gas exchange above the floor of a deciduous forest: 1. Evaporation and CO ₂ efflux. Journal of Geophysical Research, 1991, 96, 7271-7285.	3.3	180
99	Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agricultural and Forest Meteorology, 2001, 110, 27-43.	1.9	174
100	The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4594-4599.	3.3	171
101	Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research, 2002, 38, 30-1-30-11.	1.7	169
102	Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. Journal of Geophysical Research, 2008, 113, .	3.3	169
103	A Multi-layer model for estimating sulfur dioxide deposition to a deciduous oak forest canopy. Atmospheric Environment, 1988, 22, 869-884.	1.1	168
104	Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agriculture, Ecosystems and Environment, 2012, 150, 1-18.	2.5	168
105	Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data. International Journal of Biometeorology, 2005, 49, 377-387.	1.3	167
106	Discerning the forest from the trees: an essay on scaling canopy stomatal conductance. Agricultural and Forest Meteorology, 1991, 54, 197-226.	1.9	163
107	Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Resources Research, 2010, 46, .	1.7	163
108	A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange. Ecological Modelling, 2006, 196, 1-31.	1.2	161

#	Article	IF	CITATIONS
109	A spectral analysis of biosphere–atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agricultural and Forest Meteorology, 2001, 107, 1-27.	1.9	160
110	Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species. Tree Physiology, 2000, 20, 787-797.	1.4	157
111	Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agricultural and Forest Meteorology, 2011, 151, 60-69.	1.9	157
112	An analytical solution for coupled leaf photosynthesis and stomatal conductance models. Tree Physiology, 1994, 14, 1069-1079.	1.4	154
113	Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. Journal of Geophysical Research, 1996, 101, 18555-18567.	3.3	154
114	Measuring and modelling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit. Global Change Biology, 2000, 6, 613-630.	4.2	154
115	On measuring and modeling energy fluxes above the floor of a homogeneous and heterogeneous conifer forest. Agricultural and Forest Meteorology, 2000, 102, 187-206.	1.9	153
116	Accumulated winter chill is decreasing in the fruit growing regions of California. Climatic Change, 2008, 87, 153-166.	1.7	153
117	The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 2020, 1, 470-481.	12.2	153
118	Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agricultural and Forest Meteorology, 1999, 94, 171-188.	1.9	149
119	Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002, 113, 75-95.	1.9	145
120	Estimating the sensitivity of stomatal conductance to photosynthesis: a review. Plant, Cell and Environment, 2017, 40, 1214-1238.	2.8	145
121	Estimating parameters in a land-surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Global Change Biology, 2007, 13, 652-670.	4.2	144
122	Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Global Change Biology, 2010, 16, 696-710.	4.2	144
123	Multiscale analysis of temporal variability of soil CO ₂ production as influenced by weather and vegetation. Global Change Biology, 2010, 16, 1589-1605.	4.2	139
124	Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agricultural and Forest Meteorology, 2001, 108, 1-14.	1.9	138
125	Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data. Agricultural and Forest Meteorology, 2007, 144, 14-31.	1.9	138
126	Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods. Tree Physiology, 1997, 17, 511-519.	1.4	136

#	Article	IF	CITATIONS
127	Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model. Remote Sensing of Environment, 2012, 124, 581-595.	4.6	136
128	Canopy Radiative Transfer Models for Spherical and Known Leaf Inclination Angle Distributions: A Test in an Oak-Hickory Forest. Journal of Applied Ecology, 1985, 22, 539.	1.9	135
129	Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle. Agricultural and Forest Meteorology, 2000, 102, 83-103.	1.9	133
130	Biosphere-atmosphere exchange of CO ₂ in relation to climate: a cross-biome analysis across multiple time scales. Biogeosciences, 2009, 6, 2297-2312.	1.3	132
131	Frontiers and challenges in soil respiration research: from measurements to model-data integration. Biogeochemistry, 2011, 102, 1-13.	1.7	132
132	Leaf area distribution and radiative transfer in open-canopy forests: implications for mass and energy exchange. Tree Physiology, 2001, 21, 777-787.	1.4	131
133	What limits evaporation from Mediterranean oak woodlands – The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?. Advances in Water Resources, 2007, 30, 2113-2122.	1.7	131
134	Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales. Agricultural and Forest Meteorology, 2017, 237-238, 311-325.	1.9	131
135	How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	130
136	Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data. Photogrammetric Engineering and Remote Sensing, 2007, 73, 1355-1365.	0.3	130
137	Greenness indices from digital cameras predict the timing and seasonal dynamics of canopyâ€scale photosynthesis. Ecological Applications, 2015, 25, 99-115.	1.8	129
138	On the multiâ€ŧemporal correlation between photosynthesis and soil CO ₂ efflux: reconciling lags and observations. New Phytologist, 2011, 191, 1006-1017.	3.5	128
139	Solar radiation within an oak—hickory forest: an evaluation of the extinction coefficients for several radiation components during fully-leafed and leafless periods. Agricultural and Forest Meteorology, 1984, 32, 307-322.	1.9	127
140	A lagrangian random-walk model for simulating water vapor, CO2 and sensible heat flux densities and scalar profiles over and within a soybean canopy. Boundary-Layer Meteorology, 1992, 61, 113-144.	1.2	127
141	Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agricultural and Forest Meteorology, 2011, 151, 1312-1324.	1.9	127
142	The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Global Change Biology, 2019, 25, 1191-1197.	4.2	127
143	A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Boundary-Layer Meteorology, 1988, 45, 31-58.	1.2	125
144	Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 2021, 301-302, 108350.	1.9	125

#	Article	IF	CITATIONS
145	On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums. Agricultural and Forest Meteorology, 2012, 152, 212-222.	1.9	121
146	Looking deeper into the soil: biophysical controls and seasonal lags of soil CO ₂ production and efflux. Ecological Applications, 2010, 20, 1569-1582.	1.8	120
147	Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agricultural and Forest Meteorology, 2002, 111, 203-222.	1.9	119
148	The International Soil Moisture Network: serving Earth system science for over a decade. Hydrology and Earth System Sciences, 2021, 25, 5749-5804.	1.9	116
149	Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux. Agricultural and Forest Meteorology, 2005, 131, 1-12.	1.9	114
150	Large Greenhouse Gas Emissions from a Temperate Peatland Pasture. Ecosystems, 2011, 14, 311-325.	1.6	114
151	Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 289-307.	1.3	114
152	A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 1025-1056.	0.8	113
153	The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agricultural and Forest Meteorology, 2012, 153, 177-187.	1.9	113
154	Modeling energy and carbon fluxes in a heterogeneous oak woodland: A three-dimensional approach. Agricultural and Forest Meteorology, 2012, 152, 83-100.	1.9	112
155	Biophysical controls on interannual variability in ecosystemâ€scale CO ₂ and CH ₄ exchange in a California rice paddy. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 978-1001.	1.3	112
156	The Physical Nature of Solar Radiation in Heterogeneous Canopies: Spatial and Temporal Attributes. , 1994, , 21-71.		111
157	On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands: a flux perspective. Ecological Applications, 2010, 20, 1583-1597.	1.8	109
158	Scaling up flux measurements for the boreal forest using aircraft-tower combinations. Journal of Geophysical Research, 1997, 102, 29125-29133.	3.3	107
159	Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophysical Research Letters, 2012, 39, .	1.5	107
160	Upscaling fluxes from tower to landscape: Overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover. Agricultural and Forest Meteorology, 2006, 136, 132-146.	1.9	99
161	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	13.7	99
162	Widespread inhibition of daytime ecosystem respiration. Nature Ecology and Evolution, 2019, 3, 407-415.	3.4	98

#	Article	IF	CITATIONS
163	Modelling the discrimination of13CO2above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. Plant, Cell and Environment, 2003, 26, 231-244.	2.8	97
164	Identifying scaleâ€emergent, nonlinear, asynchronous processes of wetland methane exchange. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 188-204.	1.3	97
165	The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biological trace gases. Oecologia, 1998, 116, 306-315.	0.9	96
166	Capâ€filling approaches for eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with principal component analysis. Global Change Biology, 2020, 26, 1499-1518.	4.2	96
167	Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 2009, 15, 2905-2920.	4.2	94
168	Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	93
169	Data-driven diagnostics of terrestrial carbon dynamics over North America. Agricultural and Forest Meteorology, 2014, 197, 142-157.	1.9	88
170	How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19994.	0.8	87
171	On the correct estimation of gap fraction: How to remove scattered radiation in gap fraction measurements?. Agricultural and Forest Meteorology, 2013, 174-175, 170-183.	1.9	83
172	A comparative study of mass and energy exchange over a closed C3 (wheat) and an open C4 (corn) canopy: I. The partitioning of available energy into latent and sensible heat exchange. Agricultural and Forest Meteorology, 1994, 67, 191-220.	1.9	82
173	Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest. Clobal Biogeochemical Cycles, 1999, 13, 903-922.	1.9	81
174	Testing the performance of a novel spectral reflectance sensor, built with light emitting diodes (LEDs), to monitor ecosystem metabolism, structure and function. Agricultural and Forest Meteorology, 2010, 150, 1597-1606.	1.9	79
175	Field-Scale Assessment of Land and Water Use Change over the California Delta Using Remote Sensing. Remote Sensing, 2018, 10, 889.	1.8	79
176	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	3.7	79
177	A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 1025.	0.8	78
178	Causality and Persistence in Ecological Systems: A Nonparametric Spectral Granger Causality Approach. American Naturalist, 2012, 179, 524-535.	1.0	78
179	Cross-biome synthesis of source versus sink limits to tree growth. Science, 2022, 376, 758-761.	6.0	76
180	Comparing independent estimates of carbon dioxide exchange over 5 years at a deciduous forest in the southeastern United States. Journal of Geophysical Research, 2001, 106, 34167-34178.	3.3	75

#	Article	IF	CITATIONS
181	A Biogeochemical Compromise: The High Methane Cost of Sequestering Carbon in Restored Wetlands. Geophysical Research Letters, 2018, 45, 6081-6091.	1.5	75
182	Terrestrial Higher Plant Respiration and Net Primary Production. , 2001, , 33-59.		74
183	Turbulence in an almond orchard: Vertical variations in turbulent statistics. Boundary-Layer Meteorology, 1987, 40, 127-146.	1.2	73
184	Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agricultural and Forest Meteorology, 2019, 268, 202-214.	1.9	73
185	Outgoing Nearâ€Infrared Radiation From Vegetation Scales With Canopy Photosynthesis Across a Spectrum of Function, Structure, Physiological Capacity, and Weather. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005534.	1.3	73
186	Modification of the relaxed eddy accumulation technique to maximize measured scalar mixing ratio differences in updrafts and downdrafts. Journal of Geophysical Research, 1999, 104, 9121-9133.	3.3	72
187	The effect of land cover type and structure on evapotranspiration from agricultural and wetland sites in the Sacramento–San Joaquin River Delta, California. Agricultural and Forest Meteorology, 2018, 256-257, 179-195.	1.9	72
188	Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sensing of Environment, 2021, 252, 112189.	4.6	71
189	The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agricultural and Forest Meteorology, 1991, 53, 207-222.	1.9	67
190	Comparison of the NCAR LSM1 land surface model with BOREAS aspen and jack pine tower fluxes. Journal of Geophysical Research, 1997, 102, 29065-29075.	3.3	67
191	Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities. Agricultural and Forest Meteorology, 2008, 148, 1005-1020.	1.9	67
192	A comparison of models for deriving dry deposition fluxes of O3and SO2to a forest canopy. Tellus, Series B: Chemical and Physical Meteorology, 1988, 40B, 270-284.	0.8	66
193	An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites. Advances in Water Resources, 2007, 30, 1065-1081.	1.7	66
194	Surface energy-balance closure over rangeland grass using the eddy covariance method and surface renewal analysis. Agricultural and Forest Meteorology, 2008, 148, 1147-1160.	1.9	66
195	Canopy Photosynthesis and Water-Use Efficiency in a Deciduous Forest. Journal of Applied Ecology, 1987, 24, 251.	1.9	64
196	Moving beyond the incorrect but useful paradigm: reevaluating big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes – a review. Agricultural and Forest Meteorology, 2021, 306, 108435.	1.9	64
197	Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux. Biogeochemistry, 2010, 98, 127-138.	1.7	63
198	Does day and night sampling reduce spurious correlation between canopy photosynthesis and ecosystem respiration?. Agricultural and Forest Meteorology, 2015, 207, 117-126.	1.9	63

#	Article	IF	CITATIONS
199	Are rain-induced ecosystem respiration pulses enhanced by legacies of antecedent photodegradation in semi-arid environments?. Agricultural and Forest Meteorology, 2012, 154-155, 203-213.	1.9	62
200	Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Global Change Biology, 2010, 16, 3065-3074.	4.2	60
201	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	4.2	59
202	Seasonal variations in the radiation regime within an oak-hickory forest. Agricultural and Forest Meteorology, 1984, 33, 177-191.	1.9	58
203	Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests. Forest Ecology and Management, 2004, 191, 201-213.	1.4	58
204	Ecological controls on net ecosystem productivity of a seasonally dry annual grassland under current and future climates: Modelling with ecosys. Agricultural and Forest Meteorology, 2012, 152, 189-200.	1.9	58
205	Turbulent transfer in a deciduous forest. Tree Physiology, 1989, 5, 357-377.	1.4	57
206	Evaluation of forest canopy models for estimating isoprene emissions. Journal of Geophysical Research, 1996, 101, 22787-22797.	3.3	57
207	Intercomparison of techniques to model water stress effects on CO2 and energy exchange in temperate and boreal deciduous forests. Ecological Modelling, 2006, 196, 289-312.	1.2	57
208	Slow ecosystem responses conditionally regulate annual carbon balance over 15 years in Californian oak-grass savanna. Agricultural and Forest Meteorology, 2016, 228-229, 252-264.	1.9	57
209	Water use efficiency in a soybean field: influence of plant water stress. Agricultural and Forest Meteorology, 1985, 34, 53-65.	1.9	56
210	Scaling Water Vapor and Carbon Dioxide Exchange from Leaves to a Canopy: Rules and Tools. , 1993, , 77-114.		55
211	Parsing the variability in CH ₄ flux at a spatially heterogeneous wetland: Integrating multiple eddy covariance towers with highâ€resolution flux footprint analysis. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1322-1339.	1.3	54
212	Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Global Change Biology, 2017, 23, 2768-2782.	4.2	54
213	The water footprint of carbon capture and storage technologies. Renewable and Sustainable Energy Reviews, 2021, 138, 110511.	8.2	54
214	Ecosystem CO ₂ fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature. New Phytologist, 2010, 185, 226-236.	3.5	53
215	Revisiting the partitioning of net ecosystem exchange of CO2 into photosynthesis and respiration with simultaneous flux measurements of 13CO2 and CO2, soil respiration and a biophysical model, CANVEG. Agricultural and Forest Meteorology, 2017, 234-235, 149-163.	1.9	53
216	Seasonal variation in the statistics of photosynthetically active radiation penetration in an oak-hickory forest. Agricultural and Forest Meteorology, 1986, 36, 343-361.	1.9	52

#	Article	IF	CITATIONS
217	Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites. Journal of Geophysical Research, 2003, 108, .	3.3	51
218	Scaling Properties of Biologically Active Scalar Concentration Fluctuations in the Atmospheric Surface Layer over a Managed Peatland. Boundary-Layer Meteorology, 2010, 136, 407-430.	1.2	51
219	Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States. Agricultural and Forest Meteorology, 2015, 214-215, 293-305.	1.9	51
220	COSORE: A community database for continuous soil respiration and other soilâ€atmosphere greenhouse gas flux data. Global Change Biology, 2020, 26, 7268-7283.	4.2	50
221	Scaling Isoprene Fluxes from Leaves to Canopies: Test Cases over a Boreal Aspen and a Mixed Species Temperate Forest. Journal of Applied Meteorology and Climatology, 1999, 38, 885-898.	1.7	49
222	Tracking the structural and functional development of a perennial pepperweed (Lepidium latifolium L.) infestation using a multi-year archive of webcam imagery and eddy covariance measurements. Agricultural and Forest Meteorology, 2011, 151, 916-926.	1.9	49
223	Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands. Environmental Research Letters, 2011, 6, 044001.	2.2	49
224	Using digital camera and Landsat imagery with eddy covariance data to model gross primary production in restored wetlands. Agricultural and Forest Meteorology, 2017, 237-238, 233-245.	1.9	49
225	Turbulence spectra of CO2, water vapor, temperature and velocity over a deciduous forest. Agricultural and Forest Meteorology, 1986, 38, 81-99.	1.9	48
226	The impact of expanding flooded land area on the annual evaporation of rice. Agricultural and Forest Meteorology, 2016, 223, 181-193.	1.9	48
227	Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 777-795.	1.3	47
228	Confronting the water potential information gap. Nature Geoscience, 2022, 15, 158-164.	5.4	47
229	The contribution of an overlooked transport process to a wetland's methane emissions. Geophysical Research Letters, 2016, 43, 6276-6284.	1.5	46
230	A New Data Set to Keep a Sharper Eye on Land-Air Exchanges. Eos, 2017, , .	0.1	46
231	The Boardman Regional Flux Experiment. Bulletin of the American Meteorological Society, 1992, 73, 1785-1795.	1.7	45
232	Terrestrial Carbon Cycle Variability. F1000Research, 2016, 5, 2371.	0.8	45
233	Observations and stochastic modeling of soil moisture control on evapotranspiration in a Californian oak savanna. Water Resources Research, 2008, 44, .	1.7	44
234	On estimating canopy photosynthesis and stomatal conductance in a deciduous forest with clumped foliage. Tree Physiology, 1986, 2, 155-168.	1.4	43

#	Article	IF	CITATIONS
235	Are temporal variations of leaf traits responsible for seasonal and interâ€ennual variability in ecosystem CO ₂ exchange?. Functional Ecology, 2011, 25, 258-270.	1.7	43
236	A fuel dryness index for grassland fire-danger assessment. Agricultural and Forest Meteorology, 2006, 139, 1-11.	1.9	42
237	Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types. , 2009, , 35-58.		42
238	Drought Influences the Accuracy of Simulated Ecosystem Fluxes: A Model-Data Meta-analysis for Mediterranean Oak Woodlands. Ecosystems, 2013, 16, 749-764.	1.6	42
239	Modeling gross primary production of paddy rice cropland through analyses of data from CO2 eddy flux tower sites and MODIS images. Remote Sensing of Environment, 2017, 190, 42-55.	4.6	42
240	Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 145-167.	1.3	42
241	Shallow cumulus rooted in photosynthesis. Geophysical Research Letters, 2014, 41, 1796-1802.	1.5	40
242	Canopy Photosynthesis. , 2001, , 9-31.		38
243	Drought-induced nitrous oxide flux dynamics in an enclosed tropical forest. Global Change Biology, 2005, 11, 1247-1257.	4.2	38
244	Inferring CO ₂ fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model. Environmental Research Letters, 2020, 15, 084009.	2.2	38
245	Mass and Energy Exchanges of a Soybean Canopy under Various Environmental Regimes 1. Agronomy Journal, 1981, 73, 706-710.	0.9	37
246	Eddy-Correlation Measurements of Carbon Dioxide Efflux from the Floor of a Deciduous Forest. Journal of Applied Ecology, 1986, 23, 967.	1.9	36
247	Reactive hydrocarbon flux footprints during canopy senescence. Agricultural and Forest Meteorology, 2004, 127, 159-173.	1.9	36
248	Phenology of Vegetation Photosynthesis. Tasks for Vegetation Science, 2003, , 467-485.	0.6	36
249	Intra-field variability of scalar flux densities across a transition between a desert and an irrigated potato field. Boundary-Layer Meteorology, 1995, 76, 109-136.	1.2	35
250	A comparison of models for deriving dry deposition fluxes of O ₃ and SO ₂ to a forest canopy. Tellus, Series B: Chemical and Physical Meteorology, 2022, 40, 270.	0.8	34
251	Trace gas exchange above the floor of a deciduous forest: 2. SO ₂ and O ₃ deposition. Journal of Geophysical Research, 1993, 98, 12631-12638.	3.3	34
252	Coarse root distribution of a semiâ€arid oak savanna estimated with ground penetrating radar. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 135-147.	1.3	34

#	Article	IF	CITATIONS
253	Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Global Change Biology, 2018, 24, 4107-4121.	4.2	34
254	Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions. Global Biogeochemical Cycles, 2020, 34, e2020GB006678.	1.9	34
255	Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature Communications, 2021, 12, 2266.	5.8	34
256	A Synthesis of Forest Evaporation Fluxes – from Days to Years – as Measured with Eddy Covariance. Ecological Studies, 2011, , 101-116.	0.4	34
257	Leaf Pubescence Effects on the Mass and Energy Exchange Between Soybean Canopies and the Atmosphere ¹ . Agronomy Journal, 1983, 75, 537-543.	0.9	33
258	Winter fog is decreasing in the fruit growing region of the Central Valley of California. Geophysical Research Letters, 2014, 41, 3251-3256.	1.5	33
259	Seeing the Fields and Forests: Application of Surface-Layer Theory and Flux-Tower Data to Calculating Vegetation Canopy Height. Boundary-Layer Meteorology, 2016, 158, 165-182.	1.2	33
260	Productive wetlands restored for carbon sequestration quickly become net CO2 sinks with site-level factors driving uptake variability. PLoS ONE, 2021, 16, e0248398.	1.1	33
261	ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station. Remote Sensing of Environment, 2021, 258, 112360.	4.6	33
262	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.	1.9	33
263	Environmental effects on the CO2 flux and CO2—Water flux ratio of Alfalfa. Agricultural Meteorology, 1981, 24, 175-184.	0.7	32
264	Using imaging spectroscopy to detect variation in terrestrial ecosystem productivity across a waterâ€stressed landscape. Ecological Applications, 2018, 28, 1313-1324.	1.8	32
265	Characteristics of air flow above and within soybean canopies. Boundary-Layer Meteorology, 1983, 25, 43-54.	1.2	31
266	Measurement and modeling of the dry deposition of peroxides. Atmospheric Environment, 1999, 33, 577-589.	1.9	31
267	Seasonal trends in photosynthesis and electron transport during the Mediterranean summer drought in leaves of deciduous oaks. Tree Physiology, 2015, 35, 485-500.	1.4	31
268	Temporal Dynamics of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks. Geophysical Research Letters, 2018, 45, 9275-9287.	1.5	31
269	Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half. Global Change Biology, 2020, 26, 4998-5016.	4.2	31
270	On the inter―and intraâ€annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall. Global Change Biology, 2021, 27, 359-375.	4.2	31

#	Article	lF	CITATIONS
271	Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions. Agricultural and Forest Meteorology, 2021, 307, 108509.	1.9	31
272	Pollutant Deposition to Individual Leaves and Plant Canopies: Sites of Regulation and Relationship to Injury. , 1988, , 227-257.		31
273	How Much Water Is Evaporated Across California? A Multiyear Assessment Using a Biophysical Model Forced With Satellite Remote Sensing Data. Water Resources Research, 2019, 55, 2722-2741.	1.7	30
274	Effect of Drought-Induced Salinization on Wetland Methane Emissions, Gross Ecosystem Productivity, and Their Interactions. Ecosystems, 2020, 23, 675-688.	1.6	30
275	Seasonal and diurnal variation in the co2 flux and co2—water flux ratio of alfalfa. Agricultural Meteorology, 1981, 23, 231-244.	0.7	29
276	A Unique Combination of Aerodynamic and Surface Properties Contribute to Surface Cooling in Restored Wetlands of the Sacramento‣an Joaquin Delta, California. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2072-2090.	1.3	29
277	Wildfireâ€Smoke Aerosols Lead to Increased Light Use Efficiency Among Agricultural and Restored Wetland Land Uses in California's Central Valley. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005380.	1.3	29
278	Energy transfer over crop canopies: simulation and experimental verification. Agricultural and Forest Meteorology, 1992, 61, 129-149.	1.9	28
279	Comment on Vickers et al.: Self-correlation between assimilation and respiration resulting from flux partitioning of eddy-covariance CO2 fluxes. Agricultural and Forest Meteorology, 2010, 150, 312-314.	1.9	28
280	Photosynthetic responses to temperature across leaf–canopy–ecosystem scales: a 15-year study in a Californian oak-grass savanna. Photosynthesis Research, 2017, 132, 277-291.	1.6	27
281	Influence of Water Stress on the Diurnal Exchange of Mass and Energy between the Atmosphere and a Soybean Canopy 1. Agronomy Journal, 1983, 75, 543-548.	0.9	26
282	ENVIRONMENT: Environmental Monitoring Network for India. Science, 2007, 316, 204-205.	6.0	26
283	A numerical model for simulating the radiation regime within a deciduous forest canopy. Agricultural and Forest Meteorology, 1989, 46, 313-337.	1.9	25
284	Inputs of trace gases, particles and cloud droplets to terrestrial surfaces. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1990, 97, 35-59.	0.2	25
285	Matching high resolution satellite data and flux tower footprints improves their agreement in photosynthesis estimates. Agricultural and Forest Meteorology, 2022, 316, 108878.	1.9	25
286	Microclimate-plant architectural interactions: Influence of leaf width on the mass and energy exchange of a soybean canopyart. Agricultural and Forest Meteorology, 1985, 35, 1-20.	1.9	24
287	Ideas and perspectives: Strengthening the biogeosciences in environmental research networks. Biogeosciences, 2018, 15, 4815-4832.	1.3	24
288	Influence of sun zenith angle on canopy clumping and the resulting impacts on photosynthesis. Agricultural and Forest Meteorology, 2020, 291, 108065.	1.9	24

#	Article	IF	CITATIONS
289	An Ecosystem-Scale Flux Measurement Strategy to Assess Natural Climate Solutions. Environmental Science & Technology, 2021, 55, 3494-3504.	4.6	24
290	Turbulence in an almond orchard: Spatial variations in spectra and coherence. Boundary-Layer Meteorology, 1988, 42, 293-311.	1.2	23
291	The effects of extreme turbulent events on the estimation of aerodynamic variables in a deciduous forest canopy. Agricultural and Forest Meteorology, 1989, 48, 117-134.	1.9	23
292	Modelling dry deposition of SO2. Tellus, Series B: Chemical and Physical Meteorology, 1994, 46, 159-171.	0.8	22
293	"Wet/dry Daisyworld": a conceptual tool for quantifying the spatial scaling of heterogeneous landscapes and its impact on the subgrid variability of energy fluxes. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 175-188.	0.8	22
294	The role of trace gas flux networks in the biogeosciences. Eos, 2012, 93, 217-218.	0.1	22
295	Impact of Insolation Data Source on Remote Sensing Retrievals of Evapotranspiration over the California Delta. Remote Sensing, 2019, 11, 216.	1.8	22
296	Where old meets new: An ecosystem study of methanogenesis in a reflooded agricultural peatland. Global Change Biology, 2020, 26, 772-785.	4.2	22
297	Experimental harvesting of wetland plants to evaluate trade-offs between reducing methane emissions and removing nutrients accumulated to the biomass in constructed wetlands. Science of the Total Environment, 2020, 715, 136960.	3.9	22
298	Modelling dry deposition of SO2. Tellus, Series B: Chemical and Physical Meteorology, 1994, 46, 159-171.	0.8	22
299	A Comparison of a Hierarchy of Models for Determining Energy Balance Components over Vegetation Canopies. Journal of Applied Meteorology and Climatology, 1995, 34, 2182-2196.	1.7	21
300	A comparison of new and existing equations for estimating sensible heat flux using surface renewal and similarity concepts. Water Resources Research, 2006, 42, .	1.7	21
301	Carbon dioxide exchange of a pepperweed (Lepidium latifoliumL.) infestation: How do flowering and mowing affect canopy photosynthesis and autotrophic respiration?. Journal of Geophysical Research, 2011, 116, .	3.3	20
302	Transpiration and evaporation in a Californian oak-grass savanna: Field measurements and partitioning model results. Agricultural and Forest Meteorology, 2020, 295, 108204.	1.9	20
303	Convergence of potential net ecosystem production among contrasting C ₃ grasslands. Ecology Letters, 2013, 16, 502-512.	3.0	19
304	Canopy and climate controls of gross primary production of Mediterranean-type deciduous and evergreen oak savannas. Agricultural and Forest Meteorology, 2016, 226-227, 132-147.	1.9	19
305	Remotely sensed phenological heterogeneity of restored wetlands: linking vegetation structure and function. Agricultural and Forest Meteorology, 2021, 296, 108215.	1.9	18
306	The grass response. Nature, 2011, 476, 160-161.	13.7	17

#	Article	IF	CITATIONS
307	Database Maintenance, Data Sharing Policy, Collaboration. , 2012, , 399-424.		17
308	Managing land and climate. Nature Climate Change, 2014, 4, 330-331.	8.1	17
309	Measurement of Fluxes Over Land: Capabilities, Origins, and Remaining Challenges. Boundary-Layer Meteorology, 2020, 177, 365-394.	1.2	17
310	Forest Meteorology. Springer Advanced Texts in Life Sciences, 1989, , 21-95.	0.1	17
311	Comparison of In-Canopy Flux Footprints between Large-Eddy Simulation and the Lagrangian Simulation. Journal of Applied Meteorology and Climatology, 2008, 47, 2115-2128.	0.6	16
312	Predicting landscape-scale CO ₂ flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements. Biogeosciences, 2015, 12, 4577-4594.	1.3	16
313	Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes. Boundary-Layer Meteorology, 2017, 165, 197-210.	1.2	16
314	Soil thawing regulates the spring growth onset in tundra and alpine biomes. Science of the Total Environment, 2020, 742, 140637.	3.9	16
315	Microclimate in the soybean canopy. Agricultural Meteorology, 1983, 28, 321-337.	0.7	15
316	Gross fluxes of methyl chloride and methyl bromide in a California oak-savanna woodland. Atmospheric Environment, 2010, 44, 2054-2061.	1.9	15
317	Impact of Air Pollution Controls on Radiation Fog Frequency in the Central Valley of California. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5889.	1.2	15
318	Evaluation of Atmospheric Boundary Layer Height From Wind Profiling Radar and Slab Models and Its Responses to Seasonality of Land Cover, Subsidence, and Advection. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033775.	1.2	15
319	Tidal and Nontidal Marsh Restoration: A Tradeâ€Off Between Carbon Sequestration, Methane Emissions, and Soil Accretion. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006573.	1.3	15
320	A remote sensingâ€based threeâ€source energy balance model to improve global estimations of evapotranspiration in semiâ€arid treeâ€grass ecosystems. Global Change Biology, 2022, 28, 1493-1515.	4.2	15
321	The Role of Biodiversity on the Evaporation of Forests. , 2005, , 131-148.		14
322	Vertical structure heterogeneity in broadleaf forests: Effects on light interception and canopy photosynthesis. Agricultural and Forest Meteorology, 2021, 307, 108525.	1.9	14
323	Seasonality in aerodynamic resistance across a range of North American ecosystems. Agricultural and Forest Meteorology, 2021, 310, 108613.	1.9	14
324	Assessing the interplay between canopy energy balance and photosynthesis with cellulose δ18O: large-scale patterns and independent ground-truthing. Oecologia, 2018, 187, 995-1007.	0.9	13

#	Article	IF	CITATIONS
325	The Diurnal Dynamics of Gross Primary Productivity Using Observations From the Advanced Baseline Imager on the Geostationary Operational Environmental Satelliteâ€R Series at an Oak Savanna Ecosystem. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	13
326	The carbon cycle under stress. Nature, 2005, 437, 483-484.	13.7	12
327	Canopy Control of Trace Gas Emissions. , 1991, , 293-333.		11
328	A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements. Tree Physiology, 2012, 32, 1458-1470.	1.4	11
329	Spatial heterogeneity of fine root biomass and soil carbon in a California oak savanna illuminates plant functional strategy across periods of high and low resource supply. Ecohydrology, 2015, 8, 294-308.	1.1	11
330	Detecting Hot Spots of Methane Flux Using Footprintâ€Weighted Flux Maps. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	11
331	Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermalâ€Based Evaporation Modeling. Geophysical Research Letters, 2022, 49, .	1.5	11
332	Is foliage clumping an outcome of resource limitations within forests?. Agricultural and Forest Meteorology, 2020, 295, 108185.	1.9	10
333	Including soil water stress in process-based ecosystem models by scaling down maximum carboxylation rate using accumulated soil water deficit. Agricultural and Forest Meteorology, 2019, 276-277, 107649.	1.9	9
334	A novel approach to partitioning evapotranspiration into evaporation and transpiration in flooded ecosystems. Global Change Biology, 2022, 28, 990-1007.	4.2	9
335	Current Micrometeorological Flux Methodologies with Applications in Agriculture. Agronomy, 0, , 381-396.	0.2	8
336	Atmospheric humidity deficits tell us how soil moisture deficits down-regulate ecosystem evaporation. Advances in Water Resources, 2022, 159, 104100.	1.7	8
337	Life and the five biological laws. Lessons for global change models and sustainability. Ecological Complexity, 2019, 38, 11-14.	1.4	7
338	Measuring surface temperatures in a woodland savanna: Opportunities and challenges of thermal imaging in an open-canopy ecosystem. Agricultural and Forest Meteorology, 2021, 310, 108484.	1.9	7
339	Evaporation in the Boreal Zone During Summer—Physics and Vegetation. , 2001, , 151-165.		7
340	A Wind Tunnel Study to Design Large, Open-top Chambers for Whole-tree Pollutant Exposure Experiments. Japca, 1989, 39, 1549-1556.	0.3	6
341	A randomization method for efficiently and accurately processing fine roots, and separating them from debris, in the laboratory. Plant and Soil, 2013, 363, 383-398.	1.8	6
342	Evaluation of a CONUS-Wide ECOSTRESS DisALEXI Evapotranspiration Product. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10117-10133.	2.3	6

#	Article	IF	CITATIONS
343	Restoring wetlands on intensive agricultural lands modifies nitrogen cycling microbial communities and reduces N2O production potential. Journal of Environmental Management, 2021, 299, 113562.	3.8	6
344	"Wet/dry Daisyworld― a conceptual tool for quantifying the spatial scaling of heterogeneous landscapes and its impact on the subgrid variability of energy fluxes. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 175-188.	0.8	6
345	Must we incorporate soil moisture information when applying light use efficiency models with satellite remote sensing information?. New Phytologist, 2018, 218, 1293-1294.	3.5	5
346	What lies beneath: Vertical temperature heterogeneity in a Mediterranean woodland savanna. Remote Sensing of Environment, 2022, 274, 112950.	4.6	5
347	Biophysical Controls of Ecosystemâ€Scale Methane Fluxes From a Subtropical Estuarine Mangrove: Multiscale, Nonlinearity, Asynchrony and Causality. Global Biogeochemical Cycles, 2022, 36, .	1.9	5
348	The BEMA-project—A North American perspective. Atmospheric Environment, 1997, 31, 251-255.	1.9	4
349	Next-generation terrestrial carbon monitoring. Geophysical Monograph Series, 2009, , 49-69.	0.1	4
350	Fluxes of biogenic volatile compounds between plants and the atmosphere. , 2014, , 395-414.		4
351	Multiscale Assessment of Agricultural Consumptive Water Use in California's Central Valley. Water Resources Research, 2021, 57, e2020WR028876.	1.7	4
352	The need for spatially and functionally integrated models of ozone deposition to Sierra Nevada forests. Developments in Environmental Science, 2003, 2, 325-357.	0.5	3
353	Leaf structure and function. , 2014, , 173-202.		3
354	Natural carbon solutions are not large or fast enough. Global Change Biology, 2019, 25, e5.	4.2	3
355	Leaf to Landscape. Ecological Studies, 2004, , 133-168.	0.4	2
356	Ecosystem Services of Energy Exchange and Regulation. , 2013, , 81-92.		2
357	Theoretical Examination of Keeling-plot Relationships for Carbon Dioxide in a Temperate Broadleaved Forest with a Biophysical Model, CANISOTOPE. , 2005, , 109-124.		2
358	Rudolf Geiger, Robert H. Aron, and Paul Todhunter, The Climate Near the Ground. Climatic Change, 1997, 37, 441-442.	1.7	1
359	Boundary layer and stomatal control over leaf fluxes. , 0, , 136-172.		1

Canopy structure and radiative transfer. , 0, , 244-279.

11112 Spectral sensitivity of radiative transfer inversion for exectored can app pigments estimation from11322Scaling up to the ecosystem level. Tree Physiology, 2002, 229-242.0.911343Cooking deeper into the sof-loophysical controls and seasonal lage of soil11344Cooking deeper into the sof-loophysical controls and seasonal lage of soil11344Thermal and Shortwave Infrared Remote Sensing of Ecosystem Processes: Opportunities, Synergies,11345Adrientural ecosystem effects on trace gases and global climate charge. Agricultural and Forest191346Miccorology, 1993, 67, 148-150.01346Miccorology, 1993, 67, 148-150.01347Modeling plant history. Trends in Ecology and Evolution, 2002, 17, 444.1201348Integrating and scaling carbon, water, and energy fluxes with optical measurements. Ecos, 2011, 92,0,101349Integrating and scaling carbon, water, and energy fluxes with optical measurements. Ecos, 2011, 92,0,101340Internodynamics, work, and energy, 0, 15-37.001341Control over metabolic fluxes, 0, 64-88.001342Ontol over metabolic fluxes, 0, 99-110.001343Mideling the metabolic CO2 flux, 0, 99-110.001344Mideling the metabolic CO2 flux, 0, 222-243.001354Miter transport within the sol-plant-atmosphere continuum, 0, 203-221.001344Miter transport within the sol-plant-atmosphere, 0, 280-295.00<	#	ARTICLE	IF	CITATIONS
103 Looking deeper into the solt blophysical controls and seasonal lags of sol 1 104 Thermal and Shortwave Infrared Remote Sensing of Ecosystem Processes: Opportunities, Synergies, 1 106 Applicultural ecosystem effects on trace gases and global climate change. Agricultural and Forest 19 0 106 Meterology, 1993, 67, 148-150. 0.1 0 106 FLUXNET Evaluates åcœBreathing patternsåcof diverse ecosystems. Eos, 2000, 81, 565. 0.1 0 106 Modeling plant history. Trends in Ecology and Evolution, 2002, 17, 444. 4.2 0 107 Integrating and scaling carbon, water, and energy fluxes with optical measurements. Eos, 2011, 92, 0, 1 0.1 0 108 Integrating and scaling carbon, water, and energy fluxes with optical measurements. Eos, 2011, 92, 0, 1 0 0 107 Thermodynamics, work, and energy, 0, 15-37. 0 0 0 108 Control over metabolic fluxes, 0, 64-88. 0 0 109 Offfusion and continuity, 0, 111-135. 0 0 109 Uter transport within the sol-plant-atmosphere continuum, 0, 203-221. 0 0 108 Integrating and continuity, 0, 222-243. 0 0	361	Spectral sensitivity of radiative transfer inversion for seasonal canopy pigments estimation from aviris data in a woodland savanna ecosystem. , 2016, , .		1
105 COrsub524/sub52roduction and efflux across multiple vegetation types., 2010, 20, 100319061507001. 1 364 Thermal and Shortwave Infrared Remote Sensing of Ecosystem Processes: Opportunities, Synergies, 1 366 Agricultural acosystem effects on trace gases and global climate change. Agricultural and Forest 1.9 0 366 FLUXNET Evaluates & GeoBreathing patterns&Geof diverse ecosystems. Eos, 2000, 81, 565. 0.1 0 367 Modeling plant history. Trends in Ecology and Evolution, 2002, 17, 444. 4.2 0 368 Integrating and scaling carbon, water, and energy fluxes with optical measurements. Eos, 2011, 92, 377, 377. 0.1 0 370 The modynamics, work, and energy., 0,, 15-37. 0 0 371 Chemical reactions, enzyme catalysts, and stable isotopes., 0, , 38-63. 0 0 372 Control over metabolic fluxes., 0, , 64-88. 0 0 373 Modeling the metabolic CO2 flux., 0, , 89-110. 0 0 374 Diffusion and continuity., 0, , 111-135. 0 0 375 Water transport within the sol-plant-atmosphere continuum., 0, , 203-221. 0 376 Leaf and canopy energy budgets., 0, , 222-243. 0	362	Scaling up to the ecosystem level. Tree Physiology, 2002, , 229-242.	0.9	1
344 and Challenges., 2021, 1 346 Agricultural ecosystem effects on trace gases and global climate change. Agricultural and Forest 1.9 0 346 FLUXNET Evaluates & CoBreathing patterns & Food diverse ecosystems. Eos, 2000, 81, 565. 0.1 0 347 Modeling plant history. Trends in Ecology and Evolution, 2002, 17, 444. 4.2 0 348 integrating and scaling carbon, water, and energy fluxes with optical measurements. Eos, 2011, 92, 0.1 0 349 The general nature of blosphere-atmosphere fluxes., 0, , 1-14. 0 340 Thermodynamics, work, and energy., 0, , 15-37. 0 341 Chemical reactions, enzyme catalysts, and stable isotopes., 0, , 38-63. 0 342 Control over metabolic fluxes., 0, , 64-88. 0 343 Modeling the metabolic CO2 flux., 0, , 89-110. 0 344 Diffusion and continuity., 0, , 111-135. 0 347 Diffusion and continuity., 0, , 222-243. 0	363	Looking deeper into the soil: biophysical controls and seasonal lags of soil CO ₂ production and efflux across multiple vegetation types. , 2010, 20, 100319061507001.		1
NumberNumberNumberNumber366FLUXNET Evaluates à6œBreathing patternsà6of diverse ecosystems. Eos, 2000, 81, 565.0.10367Modeling plant history. Trends in Ecology and Evolution, 2002, 17, 444.4.20368Integrating and scaling carbon, water, and energy fluxes with optical measurements. Eos, 2011, 92, 3777377.0.10369The general nature of biosphere-atmosphere fluxes., 0,, 1-14.00370Thermodynamics, work, and energy., 0,, 15-37.0371Chemical reactions, enzyme catalysts, and stable isotopes., 0,, 38-63.0372Control over metabolic fluxes., 0,, 64-88.0374Diffusion and continuity., 0,, 111-135.0375Water transport within the soll-plant-atmosphere continuum., 0, 203-221.0376Leaf and canopy energy budgets., 0, 222-243.0	364	Thermal and Shortwave Infrared Remote Sensing of Ecosystem Processes: Opportunities, Synergies, and Challenges. , 2021, , .		1
367Modeling plant history. Trends in Ecology and Evolution, 2002, 17, 444.4.20368Integrating and scaling carbon, water, and energy fluxes with optical measurements. Eos, 2011, 92, 377-377.0.10369The general nature of biosphere-atmosphere fluxes., 0, , 1-14.00370Thermodynamics, work, and energy., 0,, 15-37.0371Chemical reactions, enzyme catalysts, and stable isotopes., 0,, 38-63.0372Control over metabolic fluxes., 0,, 64-88.0373Modeling the metabolic CO2 flux., 0, 89-110.0374Diffusion and continuity., 0,, 111-135.0375Water transport within the soll-plant-atmosphere continuum., 0,, 203-221.0376Leaf and canopy energy budgets., 0,, 222-243.0	365	Agricultural ecosystem effects on trace gases and global climate change. Agricultural and Forest Meteorology, 1993, 67, 148-150.	1.9	0
368Integrating and scaling carbon, water, and energy fluxes with optical measurements. Eos, 2011, 92,0.10369The general nature of biosphere-atmosphere fluxes., 0, 1-14.0370Thermodynamics, work, and energy., 0, 15-37.0371Chemical reactions, enzyme catalysts, and stable isotopes., 0, 38-63.0372Control over metabolic fluxes., 0, 64-88.0373Modeling the metabolic CO2 flux., 0, 89-110.0374Diffusion and continuity., 0, 111-135.0375Water transport within the soil-plant-atmosphere continuum., 0, 203-221.0376Leaf and canopy energy budgets., 0, 222-243.0	366	FLUXNET Evaluates "Breathing patterns―of diverse ecosystems. Eos, 2000, 81, 565.	0.1	0
368377-377.11110369The general nature of biosphere-atmosphere fluxes., 0, , 1-14.0370Thermodynamics, work, and energy., 0,, 15-37.0371Chemical reactions, enzyme catalysts, and stable isotopes., 0,, 38-63.0372Control over metabolic fluxes., 0,, 64-88.0373Modeling the metabolic CO2 flux., 0,, 89-110.0374Diffusion and continuity., 0,, 111-135.0375Water transport within the soil-plant-atmosphere continuum., 0,, 203-221.0376Leaf and canopy energy budgets., 0,, 222-243.0	367	Modeling plant history. Trends in Ecology and Evolution, 2002, 17, 444.	4.2	0
370Thermodynamics, work, and energy., 0,, 15-37.0371Chemical reactions, enzyme catalysts, and stable isotopes., 0,, 38-63.0372Control over metabolic fluxes., 0,, 64-88.0373Modeling the metabolic CO2 flux., 0,, 89-110.0374Diffusion and continuity., 0,, 111-135.0375Water transport within the soil-plant-atmosphere continuum., 0,, 203-221.0376Leaf and canopy energy budgets., 0,, 222-243.0	368		0.1	0
371Chemical reactions, enzyme catalysts, and stable isotopes. , 0, , 38-63.0372Control over metabolic fluxes. , 0, , 64-88.0373Modeling the metabolic CO2 flux. , 0, , 89-110.0374Diffusion and continuity. , 0, , 111-135.0375Water transport within the soll-plant-atmosphere continuum. , 0, , 203-221.0376Leaf and canopy energy budgets. , 0, , 222-243.0	369	The general nature of biosphere-atmosphere fluxes. , 0, , 1-14.		0
372Control over metabolic fluxes. , 0, , 64-88.0373Modeling the metabolic CO2 flux. , 0, , 89-110.0374Diffusion and continuity. , 0, , 111-135.0375Water transport within the soil-plant-atmosphere continuum. , 0, , 203-221.0376Leaf and canopy energy budgets. , 0, , 222-243.0	370	Thermodynamics, work, and energy. , 0, , 15-37.		0
373Modeling the metabolic CO2 flux., 0, 89-110.o374Diffusion and continuity., 0, 111-135.o375Water transport within the soil-plant-atmosphere continuum., 0, 203-221.o376Leaf and canopy energy budgets., 0, 222-243.o	371	Chemical reactions, enzyme catalysts, and stable isotopes. , 0, , 38-63.		0
374Diffusion and continuity., 0,, 111-135.0375Water transport within the soil-plant-atmosphere continuum., 0,, 203-221.0376Leaf and canopy energy budgets., 0,, 222-243.0	372	Control over metabolic fluxes. , 0, , 64-88.		0
375 Water transport within the soil-plant-atmosphere continuum. , 0, , 203-221. 0 376 Leaf and canopy energy budgets. , 0, , 222-243. 0	373	Modeling the metabolic CO2 flux. , 0, , 89-110.		0
376Leaf and canopy energy budgets. , 0, , 222-243.0	374	Diffusion and continuity. , 0, , 111-135.		0
	375	Water transport within the soil-plant-atmosphere continuum. , 0, , 203-221.		0
377 Vertical structure and mixing of the atmosphere. , 0, , 280-295. 0	376	Leaf and canopy energy budgets. , 0, , 222-243.		0
	377	Vertical structure and mixing of the atmosphere. , 0, , 280-295.		0

#	Article	IF	CITATIONS
379	Observations of turbulent fluxes. , 0, , 327-351.		0
380	Modeling of fluxes at the canopy and landscape scales. , 0, , 352-372.		0
381	Soil fluxes of CO2, CH4, and NOx. , 0, , 373-394.		0
382	Stable isotope variants as tracers for studying biosphere-atmosphere exchange. , 0, , 415-433.		0
383	Peer review report 2 On "Assessment of foliage clumping effects on evapotranspiration estimates in forested ecosystems― Agricultural and Forest Meteorology, 2015, 201, 679.	1.9	0
384	Peer review report 1 On "Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998-2011― Agricultural and Forest Meteorology, 2015, 201, 276.	1.9	0
385	Peer review report 2 On "Assessment of foliage clumping effects on evapotranspiration estimates in forested ecosystems― Agricultural and Forest Meteorology, 2015, 201, 709.	1.9	0
386	Peer reviewer recognition for 2014. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1471-1474.	1.3	0