Lutz Volkmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8854580/publications.pdf

Version: 2024-02-01

304743 377865 2,009 183 22 34 h-index citations g-index papers 185 185 185 494 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Maximally edge-connected and vertex-connected graphs and digraphs: A survey. Discrete Mathematics, 2008, 308, 3265-3296.	0.7	101
2	Wiener index versus maximum degree in trees. Discrete Applied Mathematics, 2002, 122, 127-137.	0.9	93
3	k-Domination and k-Independence in Graphs: A Survey. Graphs and Combinatorics, 2012, 28, 1-55.	0.4	88
4	Edge-cuts leaving components of order at least three. Discrete Mathematics, 2002, 256, 431-439.	0.7	70
5	Varieties of Roman domination II. AKCE International Journal of Graphs and Combinatorics, 2020, 17, 966-984.	0.7	46
6	Sufficient conditions for graphs to be ??-optimal, super-edge-connected, and maximally edge-connected. Journal of Graph Theory, 2005, 48, 228-246.	0.9	43
7	A classification of locally semicomplete digraphs. Discrete Mathematics, 1997, 167-168, 101-114.	0.7	41
8	Cycles in multipartite tournaments: results and problems. Discrete Mathematics, 2002, 245, 19-53.	0.7	39
9	Roman Domination in Graphs. Developments in Mathematics, 2020, , 365-409.	0.4	35
10	Sufficient conditions for \$lambda;\$prime;-optimality in graphs of diameter 2. Discrete Mathematics, 2004, 283, 113-120. mml:math altimg="sil.gif" display="inline" overflow="scroll"	0.7	34
11	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	2.7	34
12	Appl Inverse degree and edge-connectivity. Discrete Mathematics, 2009, 309, 2943-2947.	0.7	34
13	Restricted arc-connectivity of digraphs. Information Processing Letters, 2007, 103, 234-239.	0.6	33
14	Onk-domination and minimum degree in graphs. Journal of Graph Theory, 2008, 57, 33-40.	0.9	30
15	On the geodetic and geodetic domination numbers of a graph. Discrete Mathematics, 2010, 310, 2140-2146.	0.7	30
16	Multipartite tournaments: A survey. Discrete Mathematics, 2007, 307, 3097-3129.	0.7	27
17	upper bounds on the <mmi:math altimg="si1.gif" display="inline" overflow="scroll" xmins:mmi="http://www.w3.org/1998/Math/Math/Math/ML"><mml:mi>k</mml:mi>-domination number and the <mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math>-Roman domination number. Discrete Applied</mmi:math>	0.9	26
18	Mathematics, 2009, 157, 1634-1639. An upper bound on the double Roman domination number. Journal of Combinatorial Optimization, 2018, 36, 81-89.	1.3	26

#	Article	IF	Citations
19	The k-rainbow domatic number of a graph. Discussiones Mathematicae - Graph Theory, 2012, 32, 129.	0.3	26
20	Connectivity properties of locally semicomplete digraphs. Journal of Graph Theory, 1994, 18, 269-280.	0.9	24
21	Extremal Chemical Trees. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2002, 57, 49-52.	1.5	24
22	Varieties of Roman Domination. Developments in Mathematics, 2021, , 273-307.	0.4	24
23	Characterization of graphs with equal domination and covering number. Discrete Mathematics, 1998, 191, 159-169, Nordhausa€ Gaddum bounds on the <mml:math <="" altimg="si1.gif" display="inline" overflow="scroll" td=""><td>0.7</td><td>23</td></mml:math>	0.7	23
24	xmins:xocs= http://www.eisevier.com/xmi/xocs/dtd xmins:xs= http://www.w3.org/2001/xMLSchema xmlns:xsi="http://www.w3.org/2001/xMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.7	23
25	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://ww. Applied Mathema On packing and covering numbers of graphs. Discrete Mathematics, 1991, 96, 229-238.	0.7	22
26	Cycles in Multipartite Tournaments. Journal of Combinatorial Theory Series B, 1994, 62, 363-366.	1.0	22
27	ROMAN k-DOMINATION IN GRAPHS. Journal of the Korean Mathematical Society, 2009, 46, 1309-1318.	0.4	21
28	Signed Roman domination in digraphs. Journal of Combinatorial Optimization, 2015, 30, 456-467.	1.3	21
29	Some bounds on the p-domination number in trees. Discrete Mathematics, 2006, 306, 2031-2037.	0.7	20
30	On graphs with equal domination and independent domination numbers. Discrete Mathematics, 1991, 96, 75-80.	0.7	19
31	On complementary cycles in locally semicomplete digraphs. Discrete Mathematics, 1994, 135, 121-127.	0.7	19
32	Degree sequence conditions for maximally edge-connected graphs and digraphs. Journal of Graph Theory, 1997, 26, 27-34.	0.9	19
33	Cuts leaving components of given minimum order. Discrete Mathematics, 2005, 292, 55-65.	0.7	19
34	A new domination conception. Journal of Graph Theory, 1993, 17, 315-323.	0.9	18
35	Relations between the lower domination parameters and the chromatic number of a graph. Discrete Mathematics, 2004, 274, 1-8.	0.7	18
36	On graphs with equal domination and 2-domination numbers. Discrete Mathematics, 2008, 308, 2277-2281.	0.7	17

#	Article	IF	CITATIONS
37	On graphs with equal domination and covering numbers. Discrete Applied Mathematics, 1994, 51, 211-217.	0.9	16
38	Almost all almost regular c-partite tournaments with câ $^{\circ}$ 45 are vertex pancyclic. Discrete Mathematics, 2002, 242, 201-228.	0.7	16
39	A linear-programming approach to the generalized Randić index. Discrete Applied Mathematics, 2003, 128, 375-385.	0.9	16
40	Signed domatic number of a graph. Discrete Applied Mathematics, 2005, 150, 261-267.	0.9	16
41	Edge-connectivity in p-partite graphs. Journal of Graph Theory, 1989, 13, 1-6.	0.9	15
42	The Roman domatic number of a graph. Applied Mathematics Letters, 2010, 23, 1295-1300.	2.7	15
43	Global Roman Domination in Trees. Graphs and Combinatorics, 2015, 31, 813-825.	0.4	15
44	Signed Roman edge domination numbers in graphs. Journal of Combinatorial Optimization, 2016, 31, 333-346.	1.3	15
45	Sufficient conditions for equality of connectivity and minimum degree of a graph. Journal of Graph Theory, 1993, 17, 695-700.	0.9	14
46	Remarks on the bondage number of planar graphs. Discrete Mathematics, 2003, 260, 57-67.	0.7	14
47	Signed total Roman domination in graphs. Journal of Combinatorial Optimization, 2016, 32, 855-871.	1.3	14
48	Locally semicomplete digraphs that are complementarym-pancyclic. Journal of Graph Theory, 1996, 21, 121-136.	0.9	13
49	On cycles through a given vertex in multipartite tournaments. Discrete Mathematics, 1997, 164, 165-170.	0.7	13
50	Degree sequence conditions for maximally edge-connected graphs depending on the clique number. Discrete Mathematics, 2000, 211, 217-223.	0.7	13
51	The <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -rainbow bondage number of a graph. Discrete Applied Mathematics, 2014, 174, 133-139.	0.9	13
52	Sufficient conditions for λ′-optimality in graphs of diameter 2. Discrete Mathematics, 2004, 283, 113-120.	0.7	12
53	On unique independent sets in graphs. Discrete Mathematics, 1994, 131, 279-285.	0.7	11
54	Independence number in n-extendable graphs. Discrete Mathematics, 1996, 154, 167-178.	0.7	11

#	Article	IF	CITATIONS
55	All regular multipartite tournaments that are cycle complementary. Discrete Mathematics, 2004, 281, 255-266.	0.7	11
56	On local connectivity of graphs. Applied Mathematics Letters, 2008, 21, 63-66.	2.7	11
57	Independence and <i>k</i> -domination in graphs. International Journal of Computer Mathematics, 2011, 88, 905-915.	1.8	11
58	Graphs with Large Italian Domination Number. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 4273-4287.	0.9	11
59	Some remarks on alpha-domination. Discussiones Mathematicae - Graph Theory, 2004, 24, 423.	0.3	11
60	Vertex deletion and cycles in multipartite tournaments. Discrete Mathematics, 1999, 197-198, 769-779.	0.7	10
61	Signed Roman \$\$k\$\$ k -Domination in Graphs. Graphs and Combinatorics, 2016, 32, 175-190.	0.4	10
62	Double Roman Domination in Digraphs. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42, 1907-1920.	0.9	10
63	The ratio of the irredundance and domination number of a graph. Discrete Mathematics, 1998, 178, 221-228.	0.7	9
64	Vertex pancyclic in-tournaments. Journal of Graph Theory, 2001, 36, 84-104.	0.9	9
65	Extremal Chemical Trees. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2002, 57, 49-51.	1.5	9
66	On unique k-factors and unique [1,k]-factors in graphs. Discrete Mathematics, 2004, 278, 127-138.	0.7	9
67	The Maximum Size Of Graphs With A Uniquek-Factor. Combinatorica, 2004, 24, 531.	1.2	9
68	A lower bound for the distance k-domination number of trees. Resultate Der Mathematik, 2005, 47, 335-339.	0.2	9
69	Otto Blumenthal (1876–1944) in retrospect. Journal of Approximation Theory, 2006, 138, 1-36.	0.8	9
70	On the Roman Bondage Number of Planar Graphs. Graphs and Combinatorics, 2011, 27, 531-538.	0.4	9
71	Signed Roman <mml:math altimg="si5.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -domination in trees. Discrete Applied Mathematics, 2015, 186, 98-105.	0.9	9
72	On the signed total Roman domination and domatic numbers of graphs. Discrete Applied Mathematics, 2016, 214, 179-186.	0.9	9

#	Article	IF	Citations
73	Sufficient conditions on the zeroth-order general Randić index for maximally edge-connected graphs. Discrete Applied Mathematics, 2017, 218, 64-70.	0.9	9
74	Signed total Roman domination in digraphs. Discussiones Mathematicae - Graph Theory, 2017, 37, 261.	0.3	9
7 5	The signed Roman domatic number of a digraph. Electronic Journal of Graph Theory and Applications, 2015, 3, 85-93.	0.2	9
76	Factors of Locally almost Regular Graphs. Bulletin of the London Mathematical Society, 1991, 23, 121-122.	0.8	8
77	Longest paths in semicomplete multipartite digraphs. Discrete Mathematics, 1999, 199, 279-284.	0.7	8
78	A disproof of Henning's conjecture on irredundance perfect graphs. Discrete Mathematics, 2002, 254, 539-554.	0.7	8
79	Vertex 6-pancyclic in-tournaments. Discrete Mathematics, 2004, 285, 227-238.	0.7	8
80	Note on the connectivity of line graphs. Information Processing Letters, 2004, 91, 7-10.	0.6	8
81	<mml:math altimg="si7.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> -Domination perfect trees. Discrete Mathematics, 2008, 308, 3187-3198.	0.7	8
82	Signed domination and signed domatic numbers of digraphs. Discussiones Mathematicae - Graph Theory, 2011, 31, 415.	0.3	8
83	Weakly Hamiltonian-connected locally semicomplete digraphs. Journal of Graph Theory, 1996, 21, 163-172.	0.9	7
84	Longest paths through an arc in strong semicomplete multipartite digraphs. Discrete Mathematics, 2002, 258, 331-337.	0.7	7
85	The signed k-domination number of directed graphs. Central European Journal of Mathematics, 2010, 8, 1048-1057.	0.7	7
86	Hamiltonian paths, containing a given path or collection of arcs, in close to regular multipartite tournaments. Discrete Mathematics, 2004, 281, 267-276.	0.7	6
87	Signed star domatic number of a graph. Discrete Applied Mathematics, 2010, 158, 213-218.	0.9	6
88	Sufficient conditions for semicomplete multipartite digraphs to be Hamiltonian. Discrete Mathematics, 2000, 212, 91-100.	0.7	5
89	Almost regular multipartite tournaments containing a Hamiltonian path through a given arc. Discrete Mathematics, 2004, 285, 267-278.	0.7	5
90	Extendable Cycles in Multipartite Tournaments. Graphs and Combinatorics, 2004, 20, 185-190.	0.4	5

#	Article	IF	Citations
91	Unique irredundance, domination and independent domination in graphs. Discrete Mathematics, 2005, 305, 190-200.	0.7	5
92	On cycles in regular 3-partite tournaments. Discrete Mathematics, 2006, 306, 1198-1206. Almost regular <a and="" href="mailto:kmml:mathaltimg=" known="" overflow="scroll" sil.gif"="" str<="" strong="" td=""><td>0.7</td><td>5</td>	0.7	5
93	xmins:xocs="nttp://www.eisevier.com/xmi/xocs/dtd" xmins:xs="nttp://www.w3.org/2001/xiviLSchema" xmlns:xsi="http://www.w3.org/2001/XiviLSchema xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.7	5
94	All 2-connected in-tournaments that are cycle complementary. Discrete Mathematics, 2008, 308, 2115-2133.	0.7	5
95	The k-domatic number of a graph. Czechoslovak Mathematical Journal, 2009, 59, 539-550.	0.3	5
96	A remark on degree sequences of multigraphs. Mathematical Methods of Operations Research, 2009, 69, 369-374.	1.0	5
97	The signed domatic number of some regular graphs. Discrete Applied Mathematics, 2009, 157, 1905-1912.	0.9	5
98	On the number of cycles in local tournaments. Discrete Mathematics, 2009, 309, 2042-2052.	0.7	5
99	Complementary cycles in regular multipartite tournaments, where one cycle has length five. Discrete Mathematics, 2009, 309, 3131-3149.	0.7	5
100	A general method in the theory of domination in graphs. International Journal of Computer Mathematics, 2010, 87, 2915-2924.	1.8	5
101	Critical concept for double Roman domination in graphs. Discrete Mathematics, Algorithms and Applications, 2020, 12, 2050020.	0.6	5
102	A Complete Solution of a Problem of Bondy Concerning Multipartite Tournaments. Journal of Combinatorial Theory Series B, 1996, 66, 140-145.	1.0	4
103	A characterization of Γα(k)-perfect graphs. Discrete Mathematics, 2000, 224, 265-271.	0.7	4
104	Degree sequence conditions for equal edge-connectivity and minimum degree, depending on the clique number. Journal of Graph Theory, 2003, 42, 234-245.	0.9	4
105	Hamiltonian paths containing a given arc, in almost regular bipartite tournaments. Discrete Mathematics, 2004, 285, 359-364.	0.7	4
106	On the connectivity of close to regular multipartite tournaments. Discrete Applied Mathematics, 2006, 154, 1437-1452.	0.9	4
107	Lower bounds on the vertex-connectivity of digraphs and graphs. Information Processing Letters, 2006, 99, 41-46.	0.6	4
108	Local-edge-connectivity in digraphs and oriented graphs. Discrete Mathematics, 2007, 307, 3207-3212.	0.7	4

#	Article	IF	CITATIONS
109	Some remarks on <mml:math altimg="si7.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Î></mml:mi></mml:mrow><mml:mrow><mml:mi>pDiscrete Mathematics, 2008, 308, 5562-5569.</mml:mi></mml:mrow></mml:msub></mml:math>	0.7 ni> <mml:< td=""><td>4 mo>,</td></mml:<>	4 mo>,
110	The total {k}-domatic number of a graph. Journal of Combinatorial Optimization, 2012, 23, 252-260.	1.3	4
111	The signed Roman k-domatic number of a graph. Discrete Applied Mathematics, 2015, 180, 150-157.	0.9	4
112	Signed Roman k-domination in Digraphs. Graphs and Combinatorics, 2016, 32, 1217-1227.	0.4	4
113	The Roman <mml:math altimg="si27.gif" display="inline" id="d1e19" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrov<mml:mrov<mml:mrov><mml:mrov 2019,="" 235-241.<="" 258,="" applied="" discrete="" graphs.="" mathematics.="" of="" td=""><td>v>:9mml:r</td><td>nath>-doma</td></mml:mrov></mml:mrov<mml:mrov<mml:mrov></mml:mrow></mml:mrow></mml:mrow></mml:math>	v>:9mml:r	nath>-doma
114	The ratio of the longest cycle and longest path in semicomplete multipartite digraphs. Discrete Mathematics, 2001, 231, 453-457.	0.7	3
115	How local irregularity gets global in a graph. Journal of Graph Theory, 2002, 41, 18-23.	0.9	3
116	Cycles with a given number of vertices from each partite set in regular multipartite tournaments. Czechoslovak Mathematical Journal, 2006, 56, 827-844.	0.3	3
117	On connectivity in graphs with given clique number. Journal of Graph Theory, 2006, 52, 7-14.	0.9	3
118	A remark on cycles through an arc in strongly connected multipartite tournaments. Applied Mathematics Letters, 2007, 20, 1148-1150.	2.7	3
119	On the connectivity of diamond-free graphs. Discrete Applied Mathematics, 2007, 155, 2111-2117.	0.9	3
120	Some remarks on the signed domatic number of graphs with small minimum degree. Applied Mathematics Letters, 2009, 22, 1166-1169.	2.7	3
121	Every cycle-connected multipartite tournament has a universal arc. Discrete Mathematics, 2009, 309, 1013-1017.	0.7	3
122	A bound on the k-domination number of a graph. Czechoslovak Mathematical Journal, 2010, 60, 77-83.	0.3	3
123	Sufficient conditions for triangle-free graphs to be optimally restricted edge-connected. Discrete Applied Mathematics, 2012, 160, 1775-1781.	0.9	3
124	Signed 2-independence in digraphs. Discrete Mathematics, 2012, 312, 465-471.	0.7	3
125	Total restrained bondage in graphs. Acta Mathematica Sinica, English Series, 2013, 29, 1033-1042.	0.6	3
126	Edge-Removal and Edge-Addition in $\$$ alpha $\$$ Î \pm -Domination. Graphs and Combinatorics, 2016, 32, 1155-1166.	0.4	3

#	Article	IF	CITATIONS
127	Lower bounds on the signed total k-domination number of graphs. Aequationes Mathematicae, 2016, 90, 271-279.	0.8	3
128	Roman game domination number of a graph. Journal of Combinatorial Optimization, 2017, 33, 713-725.	1.3	3
129	Weakly Complementary Cycles in 3-Connected Multipartite Tournaments. Kyungpook Mathematical Journal, 2008, 48, 287-302.	0.3	3
130	Characterization of block graphs with equal 2-domination number and domination number plus one. Discussiones Mathematicae - Graph Theory, 2007, 27, 93.	0.3	3
131	A remark on the (2,2)-domination number. Discussiones Mathematicae - Graph Theory, 2008, 28, 361.	0.3	3
132	Some upper bounds for the product of the domination number and the chromatic number of a graph. Discrete Mathematics, 1993, 118, 289-292.	0.7	2
133	i $\hat{I}^3(1)$ -perfect graphs. Discrete Mathematics, 2001, 234, 133-138.	0.7	2
134	Proof of a conjecture on irredundance perfect graphs. Journal of Graph Theory, 2002, 41, 292-306.	0.9	2
135	Weighted domination in triangle-free graphs. Discrete Mathematics, 2002, 250, 233-239.	0.7	2
136	Maximum graphs with a unique minimum dominating set. Discrete Mathematics, 2003, 260, 197-203.	0.7	2
137	On αrγs(k)-perfect graphs. Discrete Mathematics, 2003, 270, 241-250.	0.7	2
138	Cycles through a given arc and certain partite sets in almost regular multipartite tournaments. Discrete Mathematics, 2004, 283, 217-229.	0.7	2
139	The Petersen graph is not 1-factorable: postscript to`The Petersen graph is not 3-edge-colorable—a new proof' [Discrete Math. 268 (2003) 325–326]. Discrete Mathematics, 2004, 287, 193-194.	0.7	2
140	Longest cycles in almost regular 3-partite tournaments. Discrete Mathematics, 2006, 306, 2931-2942.	0.7	2
141	Strong subtournaments containing a given vertex in regular multipartite tournaments. Discrete Mathematics, 2008, 308, 5516-5521.	0.7	2
142	Smallest close to regular bipartite graphs without an almost perfect matching. Acta Mathematica Sinica, English Series, 2010, 26, 1403-1412.	0.6	2
143	The Roman k-domatic number of a graph. Acta Mathematica Sinica, English Series, 2011, 27, 1899-1906.	0.6	2
144	Bounds on the signed domatic number. Applied Mathematics Letters, 2011, 24, 196-198.	2.7	2

#	Article	IF	Citations
145	Upper bounds on the signed total domatic number of graphs. Discrete Applied Mathematics, 2011, 159, 832-837.	0.9	2
146	Signed total (k, k)-domatic number of digraphs. Aequationes Mathematicae, 2012, 83, 87-96.	0.8	2
147	Signed mixed Roman domination numbers in graphs. Journal of Combinatorial Optimization, 2016, 32, 299-317.	1.3	2
148	An Upper Bound on the Double Roman Domination Number. Bulletin of the Iranian Mathematical Society, 2021, 47, 1315-1323.	1.0	2
149	On the p-domination number of cactus graphs. Discussiones Mathematicae - Graph Theory, 2005, 25, 355.	0.3	2
150	k-independence stable graphs upon edge removal. Discussiones Mathematicae - Graph Theory, 2010, 30, 265.	0.3	2
151	Neighborhood and degree conditions for super-edge-connected bipartite digraphs. Resultate Der Mathematik, 2004, 45, 45-58.	0.2	1
152	Structural Remarks on Bipartite Graphs with Unique f-Factors. Graphs and Combinatorics, 2005, 21, 421-425.	0.4	1
153	Degree sequence conditions for maximally edge-connected oriented graphs. Applied Mathematics Letters, 2006, 19, 1255-1260.	2.7	1
154	Paths with a given number of vertices from each partite set in regular multipartite tournaments. Discrete Mathematics, 2006, 306, 2724-2732.	0.7	1
155	xmins:xocs= http://www.eisevier.com/xmi/xocs/dtd xmins:xs= http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.7	1
156	On the order of certain close to regular graphs without a matching of given size. Czechoslovak Mathematical Journal, 2007, 57, 907-918.	0.3	1
157	On the connectivity of <mml:math altimg="si8.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -diamond-free graphs. Discrete Mathematics, 2009, 309, 6065-6069.	0.7	1
158	Bounds on the k-tuple domatic number of a graph. Mathematica Slovaca, 2011, 61, 851-858.	0.6	1
159	Roman Domination Dot-critical Graphs. Graphs and Combinatorics, 2013, 29, 527-533.	0.4	1
160	Bounds on the signed 2-independence number in graphs. Discussiones Mathematicae - Graph Theory, 2013, 33, 709.	0.3	1
161	Complementary cycles in almost regular multipartite tournaments, where one cycle has length four. Discrete Applied Mathematics, 2013, 161, 2169-2177.	0.9	1
162	Signed k-independence in graphs. Open Mathematics, 2014, 12, .	1.0	1

#	Article	IF	Citations
163	Upper Bounds on the Signed $\$\$(k,k)\$\$$ (k , k) -Domatic Number of Digraphs. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38, 1527-1536.	0.9	1
164	A note on the 2-rainbow bondage numbers in graphs. Asian-European Journal of Mathematics, 2016, 09, 1650013.	0.5	1
165	Signed Roman edge k-domination in graphs. Discussiones Mathematicae - Graph Theory, 2017, 37, 39.	0.3	1
166	Degree sequence conditions for maximally edge-connected and super-edge-connected digraphs depending on the clique number. Discrete Mathematics, 2018, 341, 484-491.	0.7	1
167	Extremal Digraphs for an Upper Bound on the Double Roman Domination Number. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 1153-1162.	0.9	1
168	On the signed Roman k-domination in graphs. Quaestiones Mathematicae, 2020, 43, 1065-1082.	0.6	1
169	Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number. Bulletin of the Iranian Mathematical Society, 0 , 1 .	1.0	1
170	CYCLES THROUGH A GIVEN SET OF VERTICES IN REGULAR MULTIPARTITE TOURNAMENTS. Journal of the Korean Mathematical Society, 2007, 44, 683-695.	0.4	1
171	Cyclic sums, network sharing, and restricted edge cuts in graphs with long cycles. Networks, 2008, 52, 252-255.	2.7	O
172	On arc-traceable local tournaments. Discrete Mathematics, 2008, 308, 6513-6526.	0.7	0
173	On local connectivity of graphs with given clique number. Journal of Graph Theory, 2009, 63, n/a-n/a.	0.9	O
174	Proof of a conjecture on game domination. Journal of Graph Theory, 2010, 64, 323-329.	0.9	0
175	On the existence of edge cuts leaving several large components. Discrete Mathematics, 2009, 309, 1703-1707.	0.7	O
176	Cycle factors in strongly connected local tournaments. Discrete Mathematics, 2010, 310, 850-860.	0.7	0
177	The {k}-domatic number of a graph. Aequationes Mathematicae, 2011, 82, 25-34.	0.8	O
178	Upper bounds on the signed (k, k)-domatic number. Aequationes Mathematicae, 2013, 86, 279-287.	0.8	0
179	Signed star (j, k)-domatic numbers of digraphs. Discrete Mathematics, Algorithms and Applications, 2015, 07, 1550006.	0.6	0
180	An introduction to the twin signed total $\langle i \rangle k \langle i \rangle$ -domination numbers in directed graphs. RAIRO - Operations Research, 2017, 51, 1331-1343.	1.8	0

#	Article	IF	CITATIONS
181	Sufficient Conditions for Maximally Edge-connected and Super-edge-connected Digraphs Depending on the Size. Acta Mathematica Sinica, English Series, 2019, 35, 1861-1870.	0.6	O
182	A proof of a conjecture on the differential of a subcubic graph. Discrete Applied Mathematics, 2020, 287, 27-39.	0.9	0
183	Weak Signed Roman Domination in Digraphs. Tamkang Journal of Mathematics, 0, 52, .	0.3	0