
Juho Lehmusto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8854210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of potassium chloride and potassium carbonate with respect to their tendency to cause high temperature corrosion of stainless 304L steel. Fuel Processing Technology, 2013, 105, 98-105.	3.7	60
2	High temperature oxidation of metallic chromium exposed to eight different metal chlorides. Corrosion Science, 2011, 53, 3315-3323.	3.0	42
3	Effect of pressure and impurities on oxidation in supercritical CO ₂ . Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1400-1409.	0.8	31
4	Initial oxidation mechanisms of stainless steel Sanicro 28 (35Fe27Cr31Ni) exposed to KCl, NaCl, and K2CO3 under dry and humid conditions at 535 °C. Corrosion Science, 2019, 155, 29-45.	3.0	16
5	Studies on the Partial Reactions Between Potassium Chloride and Metallic Chromium Concerning Corrosion at Elevated Temperatures. Oxidation of Metals, 2012, 77, 129-148.	1.0	15
6	The Effects of KCl, NaCl and K2CO3 on the High-Temperature Oxidation Onset of Sanicro 28 Steel. Oxidation of Metals, 2016, 85, 565-598.	1.0	15
7	The Impact of Impurities on Alloy Behavior in Supercritical CO2 at 700°C. Oxidation of Metals, 2020, 94, 95-111.	1.0	15
8	The Onset of Potassium Chloride Induced High Temperature Corrosion: A Novel Experimental Approach. Oxidation of Metals, 2014, 82, 437-456.	1.0	14
9	Superheater deposits and corrosion in temperature gradient – Laboratory studies into effects of flue gas composition, initial deposit structure, and exposure time. Energy, 2021, 228, 120494.	4.5	12
10	Applicability of ToF-SIMS and stable oxygen isotopes in KCl-induced corrosion studies at high temperatures. Corrosion Science, 2017, 125, 1-11.	3.0	10
11	The Effect of Temperature on the Formation of Oxide Scales Regarding Commercial Superheater Steels. Oxidation of Metals, 2018, 89, 251-278.	1.0	8
12	Temperature-Gradient-Driven Aging Mechanisms in Alkali-Bromide- and Sulfate-Containing Ash Deposits. Energy & Fuels, 2019, 33, 5883-5892.	2.5	7
13	Should the oxygen source be considered in the initiation of KCl-induced high-temperature corrosion?. Corrosion Science, 2021, 183, 109332.	3.0	5
14	Comprehensive insights into competitive oxidation/sulfidation reactions on binary ferritic alloys at high temperatures. Corrosion Science, 2022, , 110236.	3.0	5
15	The Effect of Deposit Temperature on the Catalytic SO2-to-SO3 Conversion in a Copper Flash Smelting Heat Recovery Boiler. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 434-439.	1.0	4
16	The Effect of Oxygen Source on the Reaction Mechanism of Potassium Chloride-Induced High-Temperature Corrosion. Corrosion, 2018, 74, 1431-1445.	0.5	4
17	Pre-oxidation as a Means to Increase Corrosion Resistance of Commercial Superheater Steels. Oxidation of Metals, 2019, 91, 311-326.	1.0	4
18	Catalytic Role of Process Dust in SO2-to-SO3 Conversion in Flash Smelting Heat Recovery Boilers. Jom, 2019, 71, 3305-3313.	0.9	4

Јино Lенмизто

#	Article	IF	CITATIONS
19	Detailed Studies on the High Temperature Corrosion Reactions between Potassium Chloride and Metallic Chromium. Materials Science Forum, 0, 696, 218-223.	0.3	3
20	The Effect of Pretreatment on the Corrosion Resistance of Superheater Materials. Solid State Phenomena, 0, 227, 309-312.	0.3	3
21	Detection of gaseous species during KClâ€induced highâ€ŧemperature corrosion by the means of CPFAAS and Clâ€APiâ€TOF. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 222-231.	0.8	3
22	A Tracer Study on sCO2 Corrosion with Multiple Oxygen-Bearing Impurities. Oxidation of Metals, 2021, 96, 571-587.	1.0	3
23	Deposit Build-up and Corrosion in a Copper Flash Smelting Heat Recovery Boiler. Oxidation of Metals, 2017, 87, 199-214.	1.0	2
24	Production and use of radioactive [82Br]KBr in high-temperature corrosion studies. Corrosion Science, 2019, 148, 24-30.	3.0	1
25	Metal Rod Surfaces after Exposure to Used Cooking Oils. Sustainability, 2022, 14, 355.	1.6	1
26	Comparison of High-Temperature Oxidation Onset Behavior of Sanicro 28 Steel with KCl, NaCl and K ₂ CO ₃ . Solid State Phenomena, 0, 227, 393-396.	0.3	0
27	Effect of annealing and supercritical CO 2 exposure at 750°C on the tensile properties of stainless steel and Niâ€based structural alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 0, , .	0.8	0
28	Amino Acids Reduce Mild Steel Corrosion in Used Cooking Oils. Sustainability, 2022, 14, 3858.	1.6	0