Anabela A Valente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8854090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. Journal of Catalysis, 2005, 229, 414-423.	6.2	318
2	Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Applied Catalysis A: General, 2009, 363, 93-99.	4.3	219
3	Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of d-xylose into furfural. Journal of Catalysis, 2006, 244, 230-237.	6.2	187
4	Highly Luminescent Tris(β-diketonate)europium(III) Complexes Immobilized in a Functionalized Mesoporous Silica. Chemistry of Materials, 2005, 17, 5077-5084.	6.7	172
5	MCM-41 functionalized with bipyridyl groups and its use as a support for oxomolybdenum(vi) catalysts. Journal of Materials Chemistry, 2002, 12, 1735-1742.	6.7	163
6	Dehydration of d-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1). Catalysis Communications, 2008, 9, 2144-2148.	3.3	150
7	Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural. Carbohydrate Research, 2006, 341, 2946-2953.	2.3	136
8	Mesoporous silica-supported 12-tungstophosphoric acid catalysts for the liquid phase dehydration of d-xylose. Microporous and Mesoporous Materials, 2006, 94, 214-225.	4.4	129
9	One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes. Journal of Catalysis, 2015, 329, 522-537.	6.2	124
10	Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material. Applied Catalysis A: General, 2010, 388, 141-148.	4.3	122
11	Modified versions of sulfated zirconia as catalysts for the conversion of xylose to furfural. Catalysis Letters, 2007, 114, 151-160.	2.6	114
12	Conversion of furfuryl alcohol to ethyl levulinate using porous aluminosilicate acid catalysts. Catalysis Today, 2013, 218-219, 76-84.	4.4	111
13	Liquid phase dehydration of d-xylose in the presence of Keggin-type heteropolyacids. Applied Catalysis A: General, 2005, 285, 126-131.	4.3	107
14	Dehydration of Xylose into Furfural in the Presence of Crystalline Microporous Silicoaluminophosphates. Catalysis Letters, 2010, 135, 41-47.	2.6	104
15	Isomerization of d-glucose to d-fructose over metallosilicate solid bases. Applied Catalysis A: General, 2008, 339, 21-27.	4.3	99
16	Solid acids with SO ₃ H groups and tunable surface properties: versatile catalysts for biomass conversion. Journal of Materials Chemistry A, 2014, 2, 11813-11824.	10.3	98
17	Integrated reduction and acid-catalysed conversion of furfural in alcohol medium using Zr,Al-containing ordered micro/mesoporous silicates. Applied Catalysis B: Environmental, 2016, 182, 485-503.	20.2	93
18	Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts. Applied Catalysis A: General, 2012, 417-418, 243-252.	4.3	92

#	Article	IF	CITATIONS
19	Multi-functional rare-earth hybrid layered networks: photoluminescence and catalysis studies. Journal of Materials Chemistry, 2009, 19, 2618.	6.7	90
20	Sulfonated Graphene Oxide as Effective Catalyst for Conversion of 5â€(Hydroxymethyl)â€⊋â€furfural into Biofuels. ChemSusChem, 2014, 7, 804-812.	6.8	90
21	Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts. Green Chemistry, 2013, 15, 3367.	9.0	89
22	Liquid-phase Dehydration of d-xylose over Microporous and Mesoporous Niobium Silicates. Catalysis Letters, 2006, 108, 179-186.	2.6	85
23	Ordered benzene–silica hybrids with molecular-scale periodicity in the walls and different mesopore sizes. Journal of Materials Chemistry, 2003, 13, 1910-1913.	6.7	83
24	Processing, stability and oxygen permeability of Sr(Fe, Al)O3-based ceramic membranes. Journal of Membrane Science, 2005, 252, 215-225.	8.2	83
25	Molybdenum η3-Allyl Dicarbonyl Complexes as a New Class of Precursors for Highly Reactive Epoxidation Catalysts withtert-Butyl Hydroperoxide. Organometallics, 2007, 26, 5548-5556.	2.3	77
26	Acid-Catalysed Conversion of Saccharides into Furanic Aldehydes in the Presence of Three-Dimensional Mesoporous Al-TUD-1. Molecules, 2010, 15, 3863-3877.	3.8	77
27	Immobilisation of amine-functionalised nickel(II) Schiff base complexes onto activated carbon treated with thionyl chloride. Microporous and Mesoporous Materials, 2002, 55, 275-284.	4.4	75
28	Immobilization of Oxomolybdenum Species in a Layered Double Hydroxide Pillared by 2,2â€~-Bipyridine-5,5â€~-dicarboxylate Anions. Inorganic Chemistry, 2004, 43, 5422-5431.	4.0	74
29	Kinetics of Cyclooctene Epoxidation withtert-Butyl Hydroperoxide in the Presence of [MoO2X2L]-Type Catalysts (L = Bidentate Lewis Base). European Journal of Inorganic Chemistry, 2005, 2005, 1716-1723.	2.0	73
30	Dioxomolybdenum(VI) modified mesoporous materials for the catalytic epoxidation of olefins. Catalysis Today, 2006, 114, 263-271.	4.4	71
31	Dichloro and dimethyl dioxomolybdenum(vi)–diazabutadiene complexes as catalysts for the epoxidation of olefins. New Journal of Chemistry, 2004, 28, 308-313.	2.8	68
32	Molecular Structure–Activity Relationships for the Oxidation of Organic Compounds Using Mesoporous Silica Catalysts Derivatised with Bis(halogeno)dioxomolybdenum(VI) Complexes. Chemistry - A European Journal, 2003, 9, 4380-4390.	3.3	65
33	Monoterpenes oxidation in the presence of Y zeolite-entrapped manganese(III) tetra(4-N-benzylpyridyl)porphyrin. Journal of Molecular Catalysis A, 2003, 201, 211-222.	4.8	62
34	Mesoporous carbon–silica solid acid catalysts for producing useful bio-products within the sugar-platform of biorefineries. Green Chemistry, 2014, 16, 4292-4305.	9.0	62
35	Epoxidation of cyclooctene catalyzed by dioxomolybdenum(VI) complexes in ionic liquids. Journal of Molecular Catalysis A, 2004, 218, 5-11.	4.8	61
36	Catalytic dehydration of xylose to furfural: vanadyl pyrophosphate as source of active soluble species. Carbohydrate Research, 2011, 346, 2785-2791.	2.3	60

#	Article	IF	CITATIONS
37	Ionic Liquids as Tools for the Acidâ€Catalyzed Hydrolysis/Dehydration of Saccharides to Furanic Aldehydes. ChemCatChem, 2011, 3, 1686-1706.	3.7	60
38	Thermal Transformation of a Layered Multifunctional Network into a Metal–Organic Framework Based on a Polymeric Organic Linker. Journal of the American Chemical Society, 2011, 133, 15120-15138.	13.7	59
39	Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts. Communications Chemistry, 2019, 2, .	4.5	59
40	Methane oxidation over Fe-, Co-, Ni- and V-containing mixed conductors. Solid State Ionics, 2005, 176, 781-791.	2.7	58
41	Synthesis and catalytic properties in olefin epoxidation of dioxomolybdenum(vi) complexes bearing a bidentate or tetradentate salen-type ligand. Journal of Molecular Catalysis A, 2007, 270, 185-194.	4.8	58
42	Investigation of Molybdenum Tetracarbonyl Complexes As Precursors to Mo ^{VI} Catalysts for the Epoxidation of Olefins. Organometallics, 2010, 29, 883-892.	2.3	57
43	Synthesis, Structure, and Catalytic Performance in Cyclooctene Epoxidation of a Molybdenum Oxide/Bipyridine Hybrid Material: {[MoO ₃ (bipy)][MoO ₃ (H ₂ O)]} _{<i>n</i>} . Inorganic Chemistry, 2010, 49, 6865-6873.	4.0	57
44	Studies on olefin epoxidation with t-BuOOH catalysed by dioxomolybdenum(VI) complexes of a novel chiral pyridyl alcoholate ligand. New Journal of Chemistry, 2001, 25, 959-963.	2.8	54
45	New chloro and triphenylsiloxy derivatives of dioxomolybdenum(VI) chelated with pyrazolylpyridine ligands: Catalytic applications in olefin epoxidation. Journal of Molecular Catalysis A, 2007, 261, 79-87.	4.8	52
46	Lanthanide-polyphosphonate coordination polymers combining catalytic and photoluminescence properties. Chemical Communications, 2013, 49, 6400.	4.1	51
47	Chemistry and Catalytic Activity of Molybdenum(VI)-Pyrazolylpyridine Complexes in Olefin Epoxidation. Crystal Structures of Monomeric Dioxo, Dioxo-1¼-oxo, and Oxodiperoxo Derivatives. Inorganic Chemistry, 2011, 50, 525-538.	4.0	50
48	Multi-functional metal–organic frameworks assembled from a tripodal organic linker. Journal of Materials Chemistry, 2012, 22, 18354.	6.7	50
49	Adsorption heat pumps for heating applications. Renewable and Sustainable Energy Reviews, 2020, 119, 109528.	16.4	50
50	Gas-Phase Oxidative Dehydrogenation of Cyclohexanol over ETS-10 and Related Materials. Journal of Catalysis, 2001, 200, 99-105.	6.2	49
51	Characterization of mixed-conducting La2Ni0.9Co0.1O4+δ membranes for dry methane oxidation. Applied Catalysis A: General, 2004, 261, 25-35.	4.3	48
52	CpMo(CO)3Cl as a precatalyst for the epoxidation of olefins. Catalysis Letters, 2005, 101, 127-130.	2.6	48
53	Amino acid-functionalized cyclopentadienyl molybdenum tricarbonyl complex and its use in catalytic olefin epoxidation. Journal of Organometallic Chemistry, 2009, 694, 1826-1833.	1.8	47
54	Robust Multifunctional Yttrium-Based Metal–Organic Frameworks with Breathing Effect. Inorganic Chemistry, 2017, 56, 1193-1208.	4.0	47

#	Article	IF	CITATIONS
55	Organotin–Oxometalate Coordination Polymers as Catalysts for the Epoxidation of Olefins. Journal of Catalysis, 2002, 209, 237-244.	6.2	46
56	A Highly Efficient Dioxo(μ-oxo)molybdenum(VI) Dimer Catalyst for Olefin Epoxidation. Inorganic Chemistry, 2007, 46, 8508-8510.	4.0	46
57	Molybdenum(vi) catalysts obtained from î·3-allyl dicarbonyl precursors: Synthesis, characterization and catalytic performance in cyclooctene epoxidation. Dalton Transactions, 2012, 41, 3474.	3.3	45
58	Microwave-assisted coating of carbon nanostructures with titanium dioxide for the catalytic dehydration of d-xylose into furfural. RSC Advances, 2013, 3, 2595.	3.6	45
59	Asymmetric cationic methyl pyridyl and pentafluorophenyl porphyrin encapsulated in zeolites: A cytochrome P-450 model. Journal of Molecular Catalysis A, 2005, 237, 86-92.	4.8	44
60	Catalytic Epoxidation and Sulfoxidation Activity of a Dioxomolybdenum(VI) Complex Bearing a Chiral Tetradentate Oxazoline Ligand. Catalysis Letters, 2009, 132, 94-103.	2.6	44
61	Synthesis and Catalytic Properties of Molybdenum(VI) Complexes with Tris(3,5-dimethyl-1-pyrazolyl)methane. Inorganic Chemistry, 2011, 50, 3490-3500.	4.0	44
62	An Octanuclear Molybdenum(VI) Complex Containing Coordinatively Bound 4,4′-di-tert-Butyl-2,2′-Bipyridine, [Mo8O22(OH)4(di-tBu-bipy)4]: Synthesis, Structure, and Catalytic Epoxidation of Bio-Derived Olefins. Inorganic Chemistry, 2012, 51, 3666-3676.	4.0	44
63	Multifunctional micro- and nanosized metal–organic frameworks assembled from bisphosphonates and lanthanides. Journal of Materials Chemistry C, 2014, 2, 3311.	5.5	44
64	Preparation and catalytic properties of a new dioxomolybdenum(VI) complex covalently anchored to mesoporous MCM-48. Inorganic Chemistry Communication, 2003, 6, 1228-1233.	3.9	43
65	Incorporation of a (Cyclopentadienyl)molybdenum Oxo Complex in MCM-41 and Its Use as a Catalyst for Olefin Epoxidation. European Journal of Inorganic Chemistry, 2004, 2004, 4914-4920.	2.0	42
66	Comparison of liquid-phase olefin epoxidation catalysed by dichlorobis-(dimethylformamide)dioxomolybdenum(VI) in homogeneous phase and grafted onto MCM-41. Journal of Molecular Catalysis A, 2009, 297, 110-117.	4.8	42
67	Preparation and catalytic studies of bis(halogeno)dioxomolybdenum(VI)-diimine complexes. Journal of Molecular Catalysis A, 2005, 227, 67-73.	4.8	41
68	Hydrothermal Synthesis, Crystal Structure, and Catalytic Potential of a One-Dimensional Molybdenum Oxide/Bipyridinedicarboxylate Hybrid. Inorganic Chemistry, 2013, 52, 4618-4628.	4.0	40
69	Synthesis and Catalytic Properties in Olefin Epoxidation of Octahedral Dichloridodioxidomolybdenum(VI) Complexes Bearing <i>N</i> , <i>N</i> â€Dialkylamide Ligands: Crystal Structure of [Mo ₂ O ₄ (μ ₂ â€O)Cl ₂ (dmf) ₄]. European Journal of Inorganic Chemistry. 2009. 2009. 4528-4537.	2.0	39
70	Triazolyl–Based Copper–Molybdate Hybrids: From Composition Space Diagram to Magnetism and Catalytic Performance. Inorganic Chemistry, 2014, 53, 10112-10121.	4.0	38
71	Synthesis, Structural Elucidation, and Catalytic Properties in Olefin Epoxidation of the Polymeric Hybrid Material [Mo3O9(2-[3(5)-Pyrazolyl]pyridine)]n. Inorganic Chemistry, 2014, 53, 2652-2665.	4.0	38
72	Incorporation of a dioxomolybdenum(VI) complex in a ZrIV-based Metal–Organic Framework and its application in catalytic olefin epoxidation. Microporous and Mesoporous Materials, 2015, 202, 106-114.	4.4	38

#	Article	IF	CITATIONS
73	Oxidation of pinane using transition metal acetylacetonate complexes immobilised on modified activated carbon. Applied Catalysis A: General, 2001, 207, 221-228.	4.3	36
74	Cyclopentadienyl molybdenum dicarbonyl η3-allyl complexes as catalyst precursors for olefin epoxidation. Crystal structures of Cp′Mo(CO)2(η3-C3H5) (Cp′A=Âη5-C5H4Me, η5-C5Me5). Journal of Organometallic Chemistry, 2010, 695, 2311-2319.	1.8	36
75	Microwave-assisted molybdenum-catalysed epoxidation of olefins. Journal of Molecular Catalysis A, 2010, 320, 19-26.	4.8	36
76	Catalytic dehydration of d-xylose to 2-furfuraldehyde in the presence of Zr-(W,Al) mixed oxides. Tracing by-products using two-dimensional gas chromatography-time-of-flight mass spectrometry. Catalysis Today, 2012, 195, 127-135.	4.4	36
77	Aqueous phase reactions of pentoses in the presence of nanocrystalline zeolite beta: Identification of by-products and kinetic modelling. Chemical Engineering Journal, 2013, 215-216, 772-783.	12.7	36
78	Synthesis and Structural Elucidation of Triazolylmolybdenum(VI) Oxide Hybrids and Their Behavior as Oxidation Catalysts. Inorganic Chemistry, 2015, 54, 8327-8338.	4.0	36
79	Crystal structure and temperature-dependent luminescence of a heterotetranuclear sodium–europium(<scp>iii</scp>) β-diketonate complex. Dalton Transactions, 2015, 44, 488-492.	3.3	36
80	Methane oxidation on the surface of mixed-conducting La0.3Sr0.7Co0.8Ga0.2O3-l´. Catalysis Communications, 2004, 5, 311-316.	3.3	34
81	Heterogeneous oxidation catalysts formed in situ from molybdenum tetracarbonyl complexes and tert-butyl hydroperoxide. Applied Catalysis A: General, 2011, 395, 71-77.	4.3	34
82	Investigation of a dichlorodioxomolybdenum(vi)-pyrazolylpyridine complex and a hybrid derivative as catalysts in olefin epoxidation. Dalton Transactions, 2014, 43, 6059.	3.3	34
83	β-Cyclodextrin and permethylated β-cyclodextrin inclusion compounds of a cyclopentadienyl molybdenum tricarbonyl complex and their use as cyclooctene epoxidation catalyst precursors. Inorganica Chimica Acta, 2006, 359, 4757-4764.	2.4	33
84	Catalytic olefin epoxidation with cationic molybdenum(VI) cis-dioxo complexes and ionic liquids. Applied Catalysis A: General, 2010, 372, 67-72.	4.3	33
85	Catalytic Performance of Ceria Nanorods in Liquid-Phase Oxidations of Hydrocarbons with tert-Butyl Hydroperoxide. Molecules, 2010, 15, 747-765.	3.8	33
86	Effect of an Ionic Liquid on the Catalytic Performance of Thiocyanatodioxomolybdenum(VI) Complexes for the Oxidation of Cyclooctene and Benzyl Alcohol. Catalysis Letters, 2009, 129, 350-357.	2.6	32
87	Synthesis, Structural Elucidation, and Application of a Pyrazolylpyridine–Molybdenum Oxide Composite as a Heterogeneous Catalyst for Olefin Epoxidation. Inorganic Chemistry, 2012, 51, 8629-8635.	4.0	32
88	Fast Microwave Synthesis of a Microporous Lanthanideâ^'Organic Framework. Crystal Growth and Design, 2010, 10, 2025-2028.	3.0	31
89	Epoxidation of cyclooctene using soluble or MCM-41-supported molybdenum tetracarbonyl–pyridylimine complexes as catalyst precursors. Journal of Organometallic Chemistry, 2011, 696, 3543-3550.	1.8	31
90	Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol. Applied Catalysis A: General, 2014, 487, 148-157.	4.3	31

#	Article	IF	CITATIONS
91	Sustainable synthesis of a catalytic active one-dimensional lanthanide–organic coordination polymer. Chemical Communications, 2015, 51, 10807-10810.	4.1	31
92	Synthesis and characterisation of chromium-substituted ETS-10. Physical Chemistry Chemical Physics, 2001, 3, 1773-1777.	2.8	30
93	Hepta-coordinate halocarbonyl molybdenum(II) and tungsten(II) complexes as heterogeneous polymerization catalysts. Journal of Molecular Catalysis A, 2006, 256, 90-98.	4.8	30
94	Liquid-phase oxidation catalysed by copper(II) immobilised in a pillared layered double hydroxide. Journal of Molecular Catalysis A, 2009, 312, 23-30.	4.8	30
95	Immobilisation of rhodium acetonitrile complexes in ordered mesoporous silica. Physical Chemistry Chemical Physics, 2002, 4, 3098-3105.	2.8	29
96	Direct oxidation of dry methane on nanocrystalline Ce0.8Gd0.2O2-Î/Pt anodes. Catalysis Communications, 2003, 4, 477-483.	3.3	29
97	Synthesis and catalytic properties in olefin epoxidation of chiral oxazoline dioxomolybdenum(VI) complexes. Journal of Molecular Catalysis A, 2006, 260, 11-18.	4.8	28
98	Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation of cyclooctene. Journal of Physics and Chemistry of Solids, 2007, 68, 1872-1880.	4.0	28
99	Grafting of Molecularly Ordered Mesoporous Phenyleneâ€Silica with Molybdenum Carbonyl Complexes: Efficient Heterogeneous Catalysts for the Epoxidation of Olefins. Advanced Synthesis and Catalysis, 2010, 352, 1759-1769.	4.3	28
100	Molybdenum(II) Diiodo-Tricarbonyl Complexes Containing Nitrogen Donor Ligands as Catalyst Precursors for the Epoxidation of Methyl Oleate. Catalysis Letters, 2012, 142, 1218-1224.	2.6	27
101	Selective Adsorption of Volatile Organic Compounds in Micropore Aluminum Methylphosphonate-α: A Combined Molecular Simulationâ^'Experimental Approach. Langmuir, 2007, 23, 7299-7305.	3.5	26
102	Oxidation of pinane over phthalocyanine complexes supported on activated carbon: Effect of the support surface treatment. Carbon, 2003, 41, 2793-2803.	10.3	25
103	Synthesis and characterization of a manganese(II) acetonitrile complex supported on functionalized MCM-41. Microporous and Mesoporous Materials, 2004, 76, 131-136.	4.4	25
104	A dinuclear oxomolybdenum(VI) complex, [Mo2O6(4,4′-di-tert-butyl-2,2′-bipyridine)2], displaying the {MoO2(μ-O)2MoO2}0 core, and its use as a catalyst in olefin epoxidation. Inorganic Chemistry Communication, 2012, 20, 147-152.	3.9	25
105	Influence of Cyclodextrins on Catalytic Olefin Epoxidation with Metal–Carbonyl Compounds. Crystal Structure of the TRIMEB Complex with CpFe(CO) ₂ Cl. Organometallics, 2007, 26, 6857-6863.	2.3	24
106	Synthesis and catalytic properties of manganese(II) and oxovanadium(IV) complexes anchored to mesoporous MCM-41. Microporous and Mesoporous Materials, 2008, 112, 14-25.	4.4	24
107	Metal oxide-triazole hybrids as heterogeneous or reaction-induced self-separating catalysts. Journal of Catalysis, 2016, 340, 354-367.	6.2	24
108	Bulk and composite catalysts combining BEA topology and mesoporosity for the valorisation of furfural. Catalysis Science and Technology, 2016, 6, 7812-7829.	4.1	23

#	Article	IF	CITATIONS
109	A Lamellar Coordination Polymer with Remarkable Catalytic Activity. Chemistry - A European Journal, 2016, 22, 13136-13146.	3.3	23
110	Alkoxylation of camphene over silica-occluded tungstophosphoric acid. Applied Catalysis A: General, 2013, 451, 36-42.	4.3	22
111	Tris(pyrazolyl)methane molybdenum tricarbonyl complexes as catalyst precursors for olefin epoxidation. Journal of Molecular Catalysis A, 2013, 370, 64-74.	4.8	22
112	Preparation and Characterization of Organotin–Oxomolybdate Coordination Polymers and Their Use in Sulfoxidation Catalysis. Chemistry - A European Journal, 2003, 9, 2685-2695.	3.3	21
113	Intercalation of a molybdenum η ³ -allyl dicarbonyl complex in a layered double hydroxide and catalytic performance in olefinepoxidation. Dalton Transactions, 2013, 42, 8231-8240.	3.3	21
114	Detecting Proton Transfer in CO ₂ Species Chemisorbed on Amineâ€Modified Mesoporous Silicas by Using ¹³ Câ€NMR Chemical Shift Anisotropy and Smart Control of Amine Surface Density. Chemistry - A European Journal, 2018, 24, 10136-10145.	3.3	21
115	Synthesis and characterisation of a Rull([14]aneS4) complex immobilised in MCM-41-type mesoporous silica. Dalton Transactions RSC, 2001, , 1628-1633.	2.3	20
116	Molybdenum(VI) oxides bearing 1,4,7-triazacyclononane and 1,1,1-tris(aminomethyl)ethane ligands: Synthesis and catalytic applications. Journal of Molecular Catalysis A, 2006, 249, 166-171.	4.8	20
117	MCM-41 Derivatised with Pyridyl Groups and Its Use as a Support for Luminescent Europium(III) Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 3786-3795.	2.0	20
118	Performance of tubular SrFe(Al)O3â~δ–SrAl2O4 composite membranes in CO2- and CH4-containing atmospheres. Journal of Membrane Science, 2008, 319, 141-148.	8.2	20
119	Epoxidation of olefins using a dichlorodioxomolybdenum(VI)-pyridylimine complex as catalyst. Inorganica Chimica Acta, 2012, 387, 234-239.	2.4	20
120	Application of the novel ETS-10/water pair in cyclic adsorption heating processes: Measurement of equilibrium and kinetics properties and simulation studies. Applied Thermal Engineering, 2015, 87, 412-423.	6.0	20
121	Triazolyl, Imidazolyl, and Carboxylic Acid Moieties in the Design of Molybdenum Trioxide Hybrids: Photophysical and Catalytic Behavior. Inorganic Chemistry, 2017, 56, 4380-4394.	4.0	20
122	TUD-1 type aluminosilicate acid catalysts for 1-butene oligomerisation. Fuel, 2017, 209, 371-382.	6.4	20
123	Adsorption heat pump optimization by experimental design and response surface methodology. Applied Thermal Engineering, 2018, 138, 849-860.	6.0	20
124	Hydrothermal Synthesis and Characterisation of Two Novel Large-Pore Framework Vanadium Silicates. European Journal of Inorganic Chemistry, 2003, 2003, 1175-1180.	2.0	19
125	Catalytic Properties of the Dioxomolybdenum Siloxide MoO2(OSiPh3)2 and its 2,2'-Bipyridine Adduct MoO2(OSiPh3)2(bpy). Molecules, 2006, 11, 298-308.	3.8	19
126	Synthesis, structure and catalytic olefin epoxidation activity of a dinuclear oxo-bridged oxodiperoxomolybdenum(VI) complex containing coordinated 4,4′-bipyridinium. Molecular Catalysis, 2017, 432, 104-114.	2.0	19

#	Article	IF	CITATIONS
127	Oxidation of Dry Methane on the Surface of Oxygen Ion-Conducting Membranes. Catalysis Letters, 2003, 91, 169-174.	2.6	18
128	Crystal Structure and Catalytic Behavior in Olefin Epoxidation of a One-Dimensional Tungsten Oxide/Bipyridine Hybrid. Inorganic Chemistry, 2015, 54, 9690-9703.	4.0	18
129	Catalytic alcoholysis of epoxides using metal-free cucurbituril-based solids. Organic and Biomolecular Chemistry, 2016, 14, 3873-3877.	2.8	18
130	Chemistry and Catalytic Performance of Pyridylâ€Benzimidazole Oxidomolybdenum(VI) Compounds in (Bio)Olefin Epoxidation. European Journal of Inorganic Chemistry, 2017, 2017, 2617-2627.	2.0	17
131	MFI Acid Catalysts with Different Crystal Sizes and Porosity for the Conversion of Furanic Compounds in Alcohol Media. ChemCatChem, 2017, 9, 2747-2759.	3.7	17
132	One-pot hydrogen production and cascade reaction of furfural to bioproducts over bimetallic Pd-Ni TUD-1 type mesoporous catalysts. Applied Catalysis B: Environmental, 2018, 237, 521-537.	20.2	17
133	Catalytic isomerization of d-glucose to d-fructose over BEA base zeotypes using different energy supply methods. Catalysis Today, 2021, 362, 162-174.	4.4	17
134	Epoxidation of DL-limonene using an indenyl molybdenum(II) tricarbonyl complex as catalyst precursor. Catalysis Communications, 2011, 15, 64-67.	3.3	16
135	Optimization of continuous-flow heterogeneous catalytic oligomerization of 1-butene by design of experiments and response surface methodology. Fuel, 2020, 259, 116256.	6.4	16
136	Immobilization of monometallic acetonitrile complexes on mesoporous silica and their activity as initiators for cyclopentadiene polymerization. Designed Monomers and Polymers, 2001, 4, 268-278.	1.6	15
137	Isomerisation of α-pinene oxide in the presence of indenyl allyl dicarbonyl molybdenum(II) and tungsten(II) complexes. Catalysis Communications, 2012, 23, 58-61.	3.3	15
138	Copper foam coated with CPO-27(Ni) metal–organic framework for adsorption heat pump: Simulation study using OpenFOAM. Applied Thermal Engineering, 2020, 178, 115498.	6.0	15
139	Methane oxidation over mixed-conducting SrFe(Al)O3â^îî–SrAl2O4composite. Physical Chemistry Chemical Physics, 2007, 9, 2744-2752.	2.8	14
140	A dinuclear oxo-bridged molybdenum(VI) complex containing a bidentate pyrazolylpyridine ligand: Structure, characterization and catalytic performance for olefin epoxidation. Inorganic Chemistry Communication, 2013, 32, 59-63.	3.9	14
141	Photoluminescent porous and layered lanthanide silicates: A review. Microporous and Mesoporous Materials, 2016, 234, 73-97.	4.4	14
142	Behavior of Triazolylmolybdenum(VI) Oxide Hybrids as Oxidation Catalysts with Hydrogen Peroxide. Catalysis Letters, 2017, 147, 1133-1143.	2.6	14
143	A Linear Trinuclear Oxidodiperoxidoâ€molybdenum(VI) Complex with Single Triazole Bridges: Catalytic Activity in Epoxidation, Alcoholysis, and Acetalization Reactions. ChemCatChem, 2018, 10, 2782-2791.	3.7	14
144	Optically functional nanocomposites with poly(oxyethylene)-based di-ureasils and mesoporous MCM-41. Microporous and Mesoporous Materials, 2006, 94, 185-192.	4.4	13

#	Article	IF	CITATIONS
145	Ionic Liquids—Advanced Reaction Media for Organic Synthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1205-1216.	1.6	13
146	Catalytic olefin epoxidation with a carboxylic acid-functionalized cyclopentadienyl molybdenum tricarbonyl complex. Journal of Organometallic Chemistry, 2014, 760, 205-211.	1.8	13
147	Ring-opening of epoxides promoted by organomolybdenum complexes of the type [(î· 5 -C 5 H 4 R)Mo(CO) 2 (i· 3 -C 3 H 5)] and [(i· 5 -C 5 H 5)Mo(CO) 3 (CH 2 R)]. Journal of Organometallic Chemistry, 2015, 799-800, 179-183.	1.8	13
148	Analysis of equilibrium and kinetic parameters of water adsorption heating systems for different porous metal/metalloid oxide adsorbents. Applied Thermal Engineering, 2016, 100, 215-226.	6.0	13
149	Synthesis, characterization and catalytic activity of vanadium-containing ETS-10. Studies in Surface Science and Catalysis, 2002, 142, 327-334.	1.5	12
150	Immobilisation of η ³ â€Allyldicarbonyl Complexes of Mo ^{II} with Bidentate Nitrogen Ligands within Aluminiumâ€Pillared Clays. European Journal of Inorganic Chemistry, 2008, 2008, 1147-1156.	2.0	12
151	Complexation of crystal-like mesoporous phenylene-silica with Cr(CO)3 and catalytic performance in the oxidation of cyclooctene. Journal of Molecular Catalysis A, 2010, 332, 13-18.	4.8	12
152	Oxidation of Ethylbenzene in the Presence of an MCM-41-Supported or Ionic Liquid-Standing Bischlorocopper(II) Complex. Catalysis Letters, 2011, 141, 1009-1017.	2.6	12
153	Isomerization of α-pinene oxide in the presence of methyltrioxorhenium(VII). Catalysis Communications, 2013, 35, 40-44.	3.3	12
154	Experimental and theoretical analysis of the diffusion behavior of chromium(III) acetylacetonate in supercritical CO2. Journal of Supercritical Fluids, 2016, 118, 153-162.	3.2	12
155	Optimized preparation and regeneration of MFI type base catalysts for <scp>d</scp> -glucose isomerization in water. Catalysis Science and Technology, 2020, 10, 3232-3246.	4.1	12
156	Nitrogen and Water Adsorption in Aluminum Methylphosphonate α: A Molecular Simulation Study. Langmuir, 2006, 22, 3097-3104.	3.5	11
157	Nanostructured Dioxomolybdenum(VI) Catalyst for the Liquid-Phase Epoxidation of Olefins. European Journal of Inorganic Chemistry, 2010, 2010, 1405-1412.	2.0	11
158	Photoluminescent Metal–Organic Frameworks – Rapid Preparation, Catalytic Activity, and Framework Relationships. European Journal of Inorganic Chemistry, 2013, 2013, 5576-5591.	2.0	11
159	Post-synthetic modification of crystal-like periodic mesoporous phenylene-silica with ferrocenyl groups. Journal of Organometallic Chemistry, 2014, 751, 501-507.	1.8	11
160	Mesostructured Catalysts Based on the BEA Topology for Olefin Oligomerisation. ChemCatChem, 2018, 10, 2741-2754.	3.7	11
161	Efficient Isomerization of α-Pinene Oxide to Campholenic Aldehyde Promoted by a Mixed-Ring Analogue of Molybdenocene. ACS Sustainable Chemistry and Engineering, 2019, 7, 13639-13645.	6.7	11
162	Olefin oligomerisation over nanocrystalline MFI-based micro/mesoporous zeotypes synthesised via bottom-up approaches. Renewable Energy, 2019, 138, 820-832.	8.9	11

#	Article	IF	CITATIONS
163	Renewable bio-based routes to Î ³ -valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. Journal of Catalysis, 2022, 406, 56-71.	6.2	11
164	Methane oxidation over SOFC anodes with nanocrystalline ceria-based phases. Solid State Ionics, 2006, 177, 2179-2183.	2.7	10
165	Intercalation of a molybdenum(0)-tetracarbonyl–bipyridine complex in a layered double hydroxide. Journal of Organometallic Chemistry, 2013, 744, 53-59.	1.8	10
166	Application of an indenyl molybdenum dicarbonyl complex in the isomerisation of α-pinene oxide to campholenic aldehyde. New Journal of Chemistry, 2014, 38, 3172.	2.8	10
167	Catalytic Application of an Octamolybdate Salt (H3biim)4[β-Mo8O26] in Olefin Epoxidation (H2biimÂ=Â2,2′-biimidazole). Catalysis Letters, 2016, 146, 841-850.	2.6	10
168	Ionic ammonium and anilinium based polymolybdate hybrid catalysts for olefin epoxidation. Applied Catalysis A: General, 2018, 564, 13-25.	4.3	10
169	Catalytic Conversion of 1â€butene over Modified Versions of Commercial ZSMâ€5 to Produce Clean Fuels and Chemicals. ChemCatChem, 2019, 11, 4196-4209.	3.7	10
170	A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide. Materials Science and Engineering C, 2021, 124, 112053.	7.3	10
171	Organotin-oxomolybdate coordination polymers as catalysts for the epoxidation of cyclooctene. Journal of Molecular Catalysis A, 2005, 238, 51-55.	4.8	9
172	Transport and electrocatalytic properties of La0.3Sr0.7Co0.8Ga0.2O3?? membranes. Journal of Solid State Electrochemistry, 2005, 9, 10-20.	2.5	9
173	Mixed conductivity and electrocatalytic performance of SrFeO3-δ–SrAl2O4 composite membranes. Solid State Ionics, 2006, 177, 2285-2289.	2.7	9
174	Oxidomolybdenum complexes for acid catalysis using alcohols as solvents and reactants. Catalysis Science and Technology, 2016, 6, 5207-5218.	4.1	9
175	Performance of a tetracarbonylmolybdenum(0) pyrazolylpyridine (pre)catalyst in olefin epoxidation and epoxide alcoholysis. Journal of Organometallic Chemistry, 2017, 846, 185-192.	1.8	9
176	Molybdenum(0) tricarbonyl and tetracarbonyl complexes with a cationic pyrazolylpyridine ligand: synthesis, crystal structures and catalytic performance in olefin epoxidation. RSC Advances, 2018, 8, 16294-16302.	3.6	9
177	Epoxidation of olefins catalyzed by molybdenum–siloxane compounds. Inorganic Chemistry Communication, 2002, 5, 1069-1072.	3.9	8
178	First stoichiometric large-pore chromium(III) silicate catalyst. Microporous and Mesoporous Materials, 2004, 69, 209-215.	4.4	8
179	Dioxomolybdenum(VI) Epoxidation Catalyst Supported on Mesoporous Silica Containing Phosphane Oxide Groups. European Journal of Inorganic Chemistry, 2010, 2010, 602-607.	2.0	8
180	Synthesis and characterization of CpMo(CO)3(CH2–pC6H4–CO2CH3) and its inclusion compounds with methylated cyclodextrins. Applications in olefin epoxidation catalysis. Journal of Organometallic Chemistry, 2013, 730, 116-122.	1.8	8

#	Article	IF	CITATIONS
181	Acid-catalyzed epoxide alcoholysis in the presence of indenyl molybdenum carbonyl complexes. Journal of Organometallic Chemistry, 2018, 855, 12-17.	1.8	8
182	A Molybdenum Trioxide Hybrid Decorated by 3-(1,2,4-Triazol-4-yl)adamantane-1-carboxylic Acid: A Promising Reaction-Induced Self-Separating (RISS) Catalyst. Inorganic Chemistry, 2019, 58, 16424-16433.	4.0	8
183	Heterogeneous catalysis with an organic–inorganic hybrid based on MoO ₃ chains decorated with 2,2′-biimidazole ligands. Catalysis Science and Technology, 2021, 11, 2214-2228.	4.1	8
184	Versatile Coordination Polymer Catalyst for Acid Reactions Involving Biobased Heterocyclic Chemicals. Catalysts, 2021, 11, 190.	3.5	8
185	Synthesis and characterization of layered double hydroxides intercalated by an oxomolybdenum complex. Journal of Physics and Chemistry of Solids, 2006, 67, 1011-1015.	4.0	7
186	Coupling of Nanoporous Chromium, Aluminium-Containing Silicates with an Ionic Liquid for the Transformation of Glucose into 5-(Hydroxymethyl)-2-furaldehyde. Molecules, 2012, 17, 3690-3707.	3.8	7
187	Measurement and modeling of tracer diffusivities of α-pinene in supercritical CO 2 , and analysis of their hydrodynamic and free-volume behaviors. Journal of Supercritical Fluids, 2016, 107, 690-698.	3.2	7
188	Mild Liquid Phase Oxidation of Benzyl Alcohol in the Presence of Microporous Framework Copper Silicates. European Journal of Inorganic Chemistry, 2020, 2020, 1172-1176.	2.0	7
189	γ-Valerolactone synthesis from α-angelica lactone and levulinic acid over biobased multifunctional nanohybrid catalysts. Catalysis Today, 2022, 394-396, 268-281.	4.4	7
190	A 5-(2-Pyridyl)tetrazolate Complex of Molybdenum(VI), Its Structure, and Transformation to a Molybdenum Oxide-Based Hybrid Heterogeneous Catalyst for the Epoxidation of Olefins. Catalysts, 2021, 11, 1407.	3.5	7
191	Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts. Molecules, 2021, 26, 7203.	3.8	7
192	A novel large-pore framework titanium silicate catalyst. Journal of Materials Chemistry, 2002, 12, 3819-3822.	6.7	6
193	Preparation of crystal-like periodic mesoporous phenylene-silica derivatized with ferrocene and its use as a catalyst for the oxidation of styrene. Dalton Transactions, 2013, 42, 14612.	3.3	6
194	Catalytic isomerisation of α-pinene oxide in the presence of ETS-10 supported ferrocenium ions. Journal of Organometallic Chemistry, 2015, 791, 66-71.	1.8	6
195	Performance of chiral tetracarbonylmolybdenum pyrindanyl amine complexes in catalytic olefin epoxidation. Journal of Organometallic Chemistry, 2018, 858, 29-36.	1.8	6
196	High-yield synthesis and catalytic response of chainlike hybrid materials of the [(MoO ₃) _m (2,2′-bipyridine) _n] family. New Journal of Chemistry, 2018, 42, 16483-16492.	2.8	6
197	Modified Versions of AMâ€4 for the Aqueous Phase Isomerization of Aldo‣accharides. European Journal of Inorganic Chemistry, 2020, 2020, 1579-1588.	2.0	6
198	Epoxidation catalysts prepared by encapsulation of molybdenum hexacarbonyl in UiO-66(Zr/Hf)-type metal-organic frameworks. Microporous and Mesoporous Materials, 2022, 330, 111603.	4.4	6

#	Article	IF	CITATIONS
199	Methane oxidation over nanocrystalline Ce0.45Zr0.45La0.10O2-Î/Pt and Ce0.9Sm0.1O2-Î/Pt anodes. Catalysis Letters, 2006, 112, 19-26.	2.6	5
200	Structural and Catalytic Studies of a Trimethyltin Vanadate Coordination Polymer. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 215-222.	3.7	5
201	A Comparative Study of Molybdenum Carbonyl and Oxomolybdenum Derivatives Bearing 1,2,3-Triazole or 1,2,4-Triazoles in Catalytic Olefin Epoxidation. Molecules, 2019, 24, 105.	3.8	5
202	Simple Hybrids Based on Mo or W Oxides and Diamines: Structure Determination and Catalytic Properties. Catalysis Letters, 2020, 150, 713-727.	2.6	5
203	Multifunctionality and cytotoxicity of a layered coordination polymer. Dalton Transactions, 2020, 49, 3989-3998.	3.3	5
204	A silicododecamolybdate/pyridinium-tetrazole hybrid molecular salt as a catalyst for the epoxidation of bio-derived olefins. Inorganica Chimica Acta, 2021, 516, 120129.	2.4	5
205	One-Pot Intercalation Strategy for the Encapsulation of a CO-Releasing Organometallic Molecule in a Layered Double Hydroxide. European Journal of Inorganic Chemistry, 2020, 2020, 2726-2736.	2.0	4
206	Hydrophobic/Hydrophilic Interplay in 1,2,4â€Triazole―or Carboxylateâ€Based Molybdenum(VI) Oxide Hybrids: A Step Toward Development of Reactionâ€Induced Selfâ€Separating Catalysts. ChemCatChem, 2021, 13, 3090-3098.	3.7	4
207	Characterization of a chiral menthyldimethyltin molybdate and its use as an olefin epoxidation catalyst. Catalysis Letters, 2007, 114, 103-109.	2.6	3
208	An Organotin Vanadate with Sodalite Topology and Catalytic Versatility in Oxidative Transformations. ChemCatChem, 2018, 10, 3481-3489.	3.7	3
209	Oxidation of sulfides in aqueous media catalyzed by pyrazole-oxidoperoxido-molybdenum(VI) complexes. Inorganica Chimica Acta, 2020, 511, 119814.	2.4	3
210	A hydrogen-bonded assembly of cucurbit[6]uril and [MoO ₂ Cl ₂ (H ₂ O) ₂] with catalytic efficacy for the one-pot conversion of olefins to alkoxy products. Dalton Transactions, 2019, 48, 11508-11519.	3.3	2
211	Intercalation of (η ⁵ â€Pentamethylcyclopentadienyl)trioxomolybdenum(VI) in a Layered Double Hydroxide. European Journal of Inorganic Chemistry, 2020, 2020, 2408-2416.	2.0	2
212	Ethylene Polymerization over Transition Metal Supported Catalysts. III. Vanadium. E-Polymers, 2006, 6, .	3.0	1
213	Ionic Liquids Based on Oxidoperoxido-Molybdenum(VI) Complexes with a Chelating Picolinate Ligand for Catalytic Epoxidation. Reactions, 2020, 1, 147-161.	2.1	1
214	Selective isomerization of α-pinene oxide to campholenic aldehyde by ionic liquid-supported indenyl-molybdenum(II)-bipyridine complexes. Journal of Organometallic Chemistry, 2022, 970-971, 122372.	1.8	1