
Carles Badenes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8853691/publications.pdf Version: 2024-02-01

CADIES RADENES

#	Article	IF	CITATIONS
1	The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophysical Journal, Supplement Series, 2022, 259, 35.	3.0	405
2	Stellar multiplicity and stellar rotation: insights from APOGEE. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2051-2061.	1.6	9
3	Testing the Momentum-driven Supernova Feedback Paradigm in M31. Astrophysical Journal, 2022, 928, 54.	1.6	2
4	Stellar kinematics of dwarf galaxies from multi-epoch spectroscopy: application to Triangulum II. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1706-1719.	1.6	5
5	Multiplicity Statistics of Stars in the Sagittarius Dwarf Spheroidal Galaxy: Comparison to the Milky Way. Astrophysical Journal Letters, 2022, 933, L18.	3.0	1
6	Analysis of Previously Classified White Dwarf–Main-sequence Binaries Using Data from the APOGEE Survey. Astronomical Journal, 2021, 161, 143.	1.9	2
7	The effects of asymmetric dark matter on stellar evolution – I. Spin-dependent scattering. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5611-5623.	1.6	10
8	The RR Lyrae Delay-time Distribution: A Novel Perspective on Models of Old Stellar Populations. Astrophysical Journal, 2021, 912, 140.	1.6	3
9	A Grid of Core-collapse Supernova Remnant Models. I. The Effect of Wind-driven Mass Loss. Astrophysical Journal, 2021, 914, 41.	1.6	9
10	Close substellar-mass companions in stellar wide binaries: discovery and characterization with APOGEE and <i>Gaia</i> DR2. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3355-3370.	1.6	1
11	The delay time distribution of supernovae from integral-field spectroscopy of nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3122-3136.	1.6	10
12	Double-lined Spectroscopic Binaries in the APOGEE DR16 and DR17 Data. Astronomical Journal, 2021, 162, 184.	1.9	40
13	A 99 minute Double-lined White Dwarf Binary from SDSS-V. Astrophysical Journal, 2021, 921, 160.	1.6	10
14	The close binary fraction as a function of stellar parameters in APOGEE: a strong anticorrelation with α abundances. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1607-1626.	1.6	34
15	Response to Comment on "A noninteracting low-mass black hole–giant star binary system― Science, 2020, 368, .	6.0	13
16	Close Binary Companions to APOGEE DR16 Stars: 20,000 Binary-star Systems Across the Color–Magnitude Diagram. Astrophysical Journal, 2020, 895, 2.	1.6	74
17	A Nucleosynthetic Origin for the Southwestern Fe-rich Structure in Kepler's Supernova Remnant. Astrophysical Journal, 2020, 890, 104.	1.6	16
18	An Ejecta Kinematics Study of Kepler's Supernova Remnant with High-resolution Chandra HETG Spectroscopy. Astrophysical Journal, 2020, 893, 98.	1.6	8

#	Article	IF	CITATIONS
19	The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. Astrophysical Journal, Supplement Series, 2020, 249, 3.	3.0	826
20	Geometry of the Draco C1 Symbiotic Binary. Astrophysical Journal Letters, 2020, 900, L43.	3.0	7
21	White Dwarfs in Close Binaries: A Systematic Search for Mass-transfer Systems and Supernova Ia Progenitors in the APOGEE Survey. Research Notes of the AAS, 2020, 4, 127.	0.3	6
22	A noninteracting low-mass black hole–giant star binary system. Science, 2019, 366, 637-640.	6.0	182
23	Measurement of the Core-collapse Progenitor Mass Distribution of the Small Magellanic Cloud. Astrophysical Journal, 2019, 871, 64.	1.6	22
24	The Time-domain Spectroscopic Survey: Radial Velocity Variability in Dwarf Carbon Stars. Astrophysical Journal, 2019, 877, 44.	1.6	8
25	Close Companions around Young Stars. Astronomical Journal, 2019, 157, 196.	1.9	81
26	The Close Binary Fraction of Solar-type Stars Is Strongly Anticorrelated with Metallicity. Astrophysical Journal, 2019, 875, 61.	1.6	140
27	The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library. Astrophysical Journal, Supplement Series, 2019, 240, 23.	3.0	299
28	SNR-calibrated Type Ia supernova models. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4346-4363.	1.6	29
29	The Two Most Recent Thermonuclear Supernovae in the Local Group: Radio Constraints on their Progenitors and Evolution. Astrophysical Journal, 2019, 872, 191.	1.6	6
30	Deep Chandra Survey of the Small Magellanic Cloud. III. Formation Efficiency of High-mass X-Ray Binaries. Astrophysical Journal, 2019, 887, 20.	1.6	22
31	The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy. Astronomical Journal, 2018, 155, 6.	1.9	20
32	PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation. Astrophysical Journal, 2018, 855, 107.	1.6	81
33	Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View. Astrophysical Journal, 2018, 854, 147.	1.6	100
34	Forty-four New and Known M-dwarf Multiples in the SDSS-III/APOGEE M-dwarf Ancillary Science Sample. Astronomical Journal, 2018, 156, 45.	1.9	8
35	Different generations of HMXBs: clues about their formation efficiency from Magellanic Clouds studies. Proceedings of the International Astronomical Union, 2018, 14, 316-321.	0.0	0
36	Chandrasekhar and Sub-Chandrasekhar Models for the X-Ray Emission of Type Ia Supernova Remnants. I. Bulk Properties. Astrophysical Journal, 2018, 865, 151.	1.6	17

#	Article	IF	CITATIONS
37	Three Hypervelocity White Dwarfs in Gaia DR2: Evidence for Dynamically Driven Double-degenerate Double-detonation Type Ia Supernovae. Astrophysical Journal, 2018, 865, 15.	1.6	145
38	Balmer-dominated Shocks Exclude Hot Progenitors for Many Type Ia Supernovae. Astrophysical Journal, 2018, 863, 120.	1.6	19
39	The separation distribution and merger rate of double white dwarfs: improved constraints. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2584-2590.	1.6	59
40	Evidence for a Sub-Chandrasekhar-mass Type Ia Supernova in the Ursa Minor Dwarf Galaxy. Astrophysical Journal, 2018, 857, 97.	1.6	28
41	The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophysical Journal, Supplement Series, 2018, 235, 42.	3.0	796
42	Supernova remnants in the Local Group – I. A model for the radio luminosity function and visibility times of supernova remnants. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2326-2340.	1.6	43
43	No hot and luminous progenitor for Tycho's supernova. Nature Astronomy, 2017, 1, 800-804.	4.2	31
44	THE ORIGIN OF THE IRON-RICH KNOT IN TYCHO'S SUPERNOVA REMNANT. Astrophysical Journal, 2017, 834, 124.	1.6	28
45	The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory. Astrophysical Journal, Supplement Series, 2017, 233, 25.	3.0	406
46	Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astronomical Journal, 2017, 154, 28.	1.9	1,100
47	Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors. Astrophysical Journal, 2017, 843, 35.	1.6	33
48	Molecular gas in supernova local environments unveiled by EDGE. Monthly Notices of the Royal Astronomical Society, 2017, 468, 628-644.	1.6	21
49	Supernova Remnants as Clues to Their Progenitors. , 2017, , 2233-2249.		6
50	Exploring the Carbon Simmering Phase: Reaction Rates, Mixing, and the Convective Urca Process. Astrophysical Journal, 2017, 851, 105.	1.6	14
51	The Impact of Progenitor Mass Loss on the Dynamical and Spectral Evolution of Supernova Remnants. Astrophysical Journal, 2017, 849, 109.	1.6	18
52	White dwarf dynamical interactions and fast optical transients. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4815-4821.	1.6	9
53	Supernova Remnants as Clues to Their Progenitors. , 2017, , 1-17.		1
54	THE TIME-DOMAIN SPECTROSCOPIC SURVEY: UNDERSTANDING THE OPTICALLY VARIABLE SKY WITH SEQUELS IN SDSS-III. Astrophysical Journal, 2016, 825, 137.	1.6	18

#	Article	IF	CITATIONS
55	TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS. Astrophysical Journal, 2016, 820, 33.	1.6	75
56	A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THERMONUCLEAR SUPERNOVAE WITH THE VERY LARGE ARRAY. Astrophysical Journal, 2016, 821, 119.	1.6	95
57	NEUTRONIZATION DURING CARBON SIMMERING IN TYPE IA SUPERNOVA PROGENITORS. Astrophysical Journal, 2016, 825, 57.	1.6	28
58	Indirect probes of dark matter and globular cluster properties from dark matter annihilation within the coolest white dwarfs. Physical Review D, 2015, 91, .	1.6	17
59	THE PROGENITORS AND LIFETIMES OF PLANETARY NEBULAE. Astrophysical Journal Letters, 2015, 804, L25.	3.0	21
60	STATISTICAL TIME-RESOLVED SPECTROSCOPY: A HIGHER FRACTION OF SHORT-PERIOD BINARIES FOR METAL-RICH F-TYPE DWARFS IN SDSS. Astrophysical Journal Letters, 2015, 806, L2.	3.0	17
61	A double white dwarf with a paradoxical origin?. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3966-3974.	1.6	19
62	A CHANDRASEKHAR MASS PROGENITOR FOR THE TYPE Ia SUPERNOVA REMNANT 3C 397 FROM THE ENHANCED ABUNDANCES OF NICKEL AND MANGANESE. Astrophysical Journal Letters, 2015, 801, L31.	3.0	103
63	ARE MODELS FOR CORE-COLLAPSE SUPERNOVA PROGENITORS CONSISTENT WITH THE PROPERTIES OF SUPERNOVA REMNANTS?. Astrophysical Journal, 2015, 803, 101.	1.6	38
64	THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS. Astrophysical Journal, 2015, 806, 244.	1.6	49
65	OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY. Astrophysical Journal, 2015, 798, 7.	1.6	1,119
66	DISCRIMINATING THE PROGENITOR TYPE OF SUPERNOVA REMNANTS WITH IRON K-SHELL EMISSION. Astrophysical Journal Letters, 2014, 785, L27.	3.0	128
67	ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA SUPERNOVA REMNANT G299.2–2.9. Astrophysical Journal Letters, 2014, 792, L20.	3.0	10
68	IDENTIFICATION OF A JET-DRIVEN SUPERNOVA REMNANT IN THE SMALL MAGELLANIC CLOUD: POSSIBLE EVIDENCE FOR THE ENHANCEMENT OF BIPOLAR EXPLOSIONS AT LOW METALLICITY. Astrophysical Journal, 2014, 788, 5.	1.6	17
69	NEW EVIDENCE FOR EFFICIENT COLLISIONLESS HEATING OF ELECTRONS AT THE REVERSE SHOCK OF A YOUNG SUPERNOVA REMNANT. Astrophysical Journal, 2014, 780, 136.	1.6	53
70	A SUPER-SOLAR METALLICITY FOR THE PROGENITOR OF KEPLER'S SUPERNOVA. Astrophysical Journal Letters, 2013, 767, L10.	3.0	37
71	SDSS 1355+0856: a detached white dwarfÂ+ M star binary in the period gap discovered by the SWARMS surveyã~ Monthly Notices of the Royal Astronomical Society, 2013, 429, 3596-3603.	1.6	5
72	Variability of broad emission lines in high-luminosity, high-redshift quasars. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1411-1421.	1.6	5

#	Article	IF	CITATIONS
73	SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE. Astrophysical Journal, 2013, 777, 44.	1.6	68
74	Progenitor metallicity of Kepler's supernova. , 2012, , .		2
75	THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK. Astrophysical Journal Letters, 2012, 749, L11.	3.0	112
76	THE ORIGIN OF KEPLER'S SUPERNOVA REMNANT. Astrophysical Journal, 2012, 756, 6.	1.6	58
77	CHARACTERIZING THE GALACTIC WHITE DWARF BINARY POPULATION WITH SPARSELY SAMPLED RADIAL VELOCITY DATA. Astrophysical Journal, 2012, 751, 143.	1.6	31
78	EVLA OBSERVATIONS CONSTRAIN THE ENVIRONMENT AND PROGENITOR SYSTEM OF Type Ia SUPERNOVA 2011fe. Astrophysical Journal, 2012, 750, 164.	1.6	154
79	Time-Resolved Spectroscopy with SDSS. Proceedings of the International Astronomical Union, 2011, 7, 289-290.	0.0	0
80	USING THE X-RAY MORPHOLOGY OF YOUNG SUPERNOVA REMNANTS TO CONSTRAIN EXPLOSION TYPE, EJECTA DISTRIBUTION, AND CHEMICAL MIXING. Astrophysical Journal, 2011, 732, 114.	1.6	124
81	AN EMERGING CLASS OF BRIGHT, FAST-EVOLVING SUPERNOVAE WITH LOW-MASS EJECTA. Astrophysical Journal, 2011, 730, 89.	1.6	38
82	EVIDENCE FOR PARTICLE ACCELERATION TO THE KNEE OF THE COSMIC RAY SPECTRUM IN <i>TYCHO</i> 'S SUPERNOVA REMNANT. Astrophysical Journal Letters, 2011, 728, L28.	3.0	86
83	Is the metallicity of their host galaxies a good measure of the metallicity of Type Ia supernovae?. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1592-1606.	1.6	11
84	DIRECT CONFIRMATION OF THE ASYMMETRY OF THE CAS A SUPERNOVA WITH LIGHT ECHOES. Astrophysical Journal, 2011, 732, 3.	1.6	90
85	METALLICITY AS A SOURCE OF DISPERSION IN THE SNIa BOLOMETRIC LIGHT CURVE LUMINOSITY-WIDTH RELATIONSHIP. Astrophysical Journal Letters, 2010, 711, L66-L70.	3.0	56
86	The supernova rate and delay time distribution in the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1314-1327.	1.6	102
87	On the size distribution of supernova remnants in the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1301-1313.	1.6	81
88	X-ray studies of supernova remnants: A different view of supernova explosions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7141-7146.	3.3	21
89	TWINS: THE TWO SHORTEST PERIOD NON-INTERACTING DOUBLE DEGENERATE WHITE DWARF STARS. Astrophysical Journal, 2009, 707, L51-L55.	1.6	38
90	FIRST RESULTS FROM THE SWARMS SURVEY. SDSS 1257+5428: A NEARBY, MASSIVE WHITE DWARF BINARY WITH A LIKELY NEUTRON STAR OR BLACK HOLE COMPANION. Astrophysical Journal, 2009, 707, 971-978.	1.6	53

#	Article	IF	CITATIONS
91	THE STELLAR ANCESTRY OF SUPERNOVAE IN THE MAGELLANIC CLOUDS. I. THE MOST RECENT SUPERNOVAE IN THE LARGE MAGELLANIC CLOUD. Astrophysical Journal, 2009, 700, 727-740.	1.6	82
92	TYPING SUPERNOVA REMNANTS USING X-RAY LINE EMISSION MORPHOLOGIES. Astrophysical Journal, 2009, 706, L106-L109.	1.6	74
93	The End of Amnesia: Measuring the Metallicities of Type Ia SN Progenitors with Manganese Lines in Supernova Remnants. , 2009, , .		1
94	Star Formation Around the Youngest Supernova Remnants in the Large Magellanic Cloud: Implications for Type Ia Supernova Progenitors. , 2009, , .		0
95	The End of Amnesia: A New Method for Measuring the Metallicity of Type Ia Supernova Progenitors Using Manganese Lines in Supernova Remnants. Astrophysical Journal, 2008, 680, L33-L36.	1.6	64
96	Morphological Evidence for Azimuthal Variations of the Cosmicâ€Ray Ion Acceleration at the Blast Wave of SN 1006. Astrophysical Journal, 2008, 680, 1180-1197.	1.6	99
97	The Persistence of Memory, or How the Xâ€Ray Spectrum of SNR 0509â^'67.5 Reveals the Brightness of Its Parent Type Ia Supernova. Astrophysical Journal, 2008, 680, 1149-1157.	1.6	72
98	A Deep <i>Chandra</i> Observation of Kepler's Supernova Remnant: A Type Ia Event with Circumstellar Interaction. Astrophysical Journal, 2007, 668, L135-L138.	1.6	116
99	Are the Models for Type Ia Supernova Progenitors Consistent with the Properties of Supernova Remnants?. Astrophysical Journal, 2007, 662, 472-486.	1.6	135
100	Constraints on the Physics of Type Ia Supernovae from the Xâ€Ray Spectrum of the Tycho Supernova Remnant. Astrophysical Journal, 2006, 645, 1373-1391.	1.6	196
101	Can Ejectaâ€dominated Supernova Remnants be Typed from Their Xâ€Ray Spectra? The Case of G337.2â^'0.7. Astrophysical Journal, 2006, 646, 982-1000.	1.6	37
102	Cosmicâ€Ray Acceleration at the Forward Shock in Tycho's Supernova Remnant: Evidence fromChandraXâ€Ray Observations. Astrophysical Journal, 2005, 634, 376-389.	1.6	267
103	Thermal Xâ€Ray Emission from Shocked Ejecta in Type Ia Supernova Remnants. II. Parameters Affecting the Spectrum. Astrophysical Journal, 2005, 624, 198-212.	1.6	55
104	A model grid for the spectral analysis of X-ray emission in young Type Ia supernova remnants. Advances in Space Research, 2005, 35, 987-990.	1.2	5
105	Thermonuclear Supernova Explosions and Their Remnants: The Case of Tycho. International Astronomical Union Colloquium, 2005, 192, 233-238.	0.1	0
106	Thermonuclear Supernova Explosions and Their Remnants: The Case of Tycho. , 2005, , 233-238.		0
107	Thermal Xâ€Ray Emission from Young Type Ia Supernova Remnants. Publications of the Astronomical Society of the Pacific, 2005, 117, 654-654.	1.0	0
108	A Million Second Chandra View of Cassiopeia A. Astrophysical Journal, 2004, 615, L117-L120.	1.6	216

#	Article	IF	CITATIONS
109	Design and flight performance of a crystal diffraction telescope. , 2003, 4851, 895.		4
110	Thermal Xâ€Ray Emission from Shocked Ejecta in Type Ia Supernova Remnants: Prospects for Explosion Mechanism Identification. Astrophysical Journal, 2003, 593, 358-369.	1.6	101
111	The Imprint of Presupernova Evolution on Supernova Remnants. Astrophysical Journal, 2001, 556, L41-L45.	1.6	5
112	Prospects for SNIa Explosion Mechanism Identification Through SNRs. , 0, , 264-267.		1