Davide Balestri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8853486/publications.pdf

Version: 2024-02-01

840776 888059 24 317 11 17 citations h-index g-index papers 26 26 26 351 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Liquid Nicotine Tamed in Solid Forms by Cocrystallization. Crystal Growth and Design, 2017, 17, 4958-4964.	3.0	35
2	Synthesis of Carbolines via Palladium/Carboxylic Acid Joint Catalysis. Organic Letters, 2018, 20, 3220-3224.	4.6	34
3	Heterogenization of a [NiFe] Hydrogenase Mimic through Simple and Efficient Encapsulation into a Mesoporous MOF. Inorganic Chemistry, 2017, 56, 14801-14808.	4.0	28
4	Visibleâ€Lightâ€Promoted Polycyclizations of Dienynes. Angewandte Chemie - International Edition, 2019, 58, 6703-6707.	13.8	20
5	Orthogonal Syntheses of 3.2.0 Bicycles from Enallenes Promoted by Visible Light. Organic Letters, 2020, 22, 6354-6359.	4.6	18
6	Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angewandte Chemie - International Edition, 2021, 60, 10194-10202.	13.8	18
7	Changing the Dress to a MOF through Fluorination and Transmetalation. Structural and Gas-Sorption Effects. Crystal Growth and Design, 2018, 18, 6824-6832.	3.0	17
8	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17342-17350.	13.8	16
9	"Bottled―spiro-doubly aromatic trinuclear [Pd ₂ Ru] ⁺ complexes. Chemical Science, 2021, 12, 477-486.	7.4	16
10	Dimerizing cascades of enallenamides reveal the visible-light-promoted activation of cumulated C–C double bonds. Chemical Science, 2022, 13, 2632-2639.	7.4	14
11	Coordination Driven Capture of Nicotine Inside a Mesoporous MOF. Materials, 2017, 10, 727.	2.9	12
12	Linker dependent dimensionality in Zn(II)-coordination polymers containing a flexible bis-pyridyl-bis-amide ligand. Polyhedron, 2018, 153, 278-285.	2.2	11
13	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17503-17511.	2.0	11
14	Structural, thermal and topological characterization of coordination networks containing flexible aminocarboxylate ligands with a central biphenylene scaffold. CrystEngComm, 2019, 21, 6365-6373.	2.6	11
15	Extension of the Pd-catalyzed C N bond forming reaction to the synthesis of large polydentate ligands containing N H functions. Inorganica Chimica Acta, 2018, 470, 416-422.	2.4	9
16	Phosphine Oxide Porous Organic Polymers Incorporating Cobalt(II) Ions: Synthesis, Characterization, and Investigation of H ₂ Production. ACS Omega, 2022, 7, 6104-6112.	3.5	8
17	Trisulfonamide calix[6]arene-catalysed Michael addition to nitroalkenes. Organic and Biomolecular Chemistry, 2020, 18, 6241-6246.	2.8	7

Chiral Auxiliary Induced Diastereoselective Synthesis of (<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i>,<i>R</i

#	Article	IF	CITATIONS
19	Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N,N′-Dimethyl-piperazine-2,3-dithione/l2 Mixtures. Molecules, 2021, 26, 4721.	3.8	6
20	Stabilization of liquid active guests <i>via</i> nanoconfinement into a flexible microporous metal–organic framework. CrystEngComm, 2021, 23, 7262-7269.	2.6	6
21	<i>anti</i> â€Dioxylation of Cyclohexâ€4â€eneâ€1,2â€diamine Derivatives: Asymmetric Routes to Hydroxy―and Aminoâ€Substituted Cyclohexane and 7â€Azanorbornane. European Journal of Organic Chemistry, 2014, 2014, 1907-1914.	2.4	5
22	Supramolecular Assemblies in Silver Complexes: Phase Transitions and the Role of the Halogen Bond. Inorganic Chemistry, 2020, 59, 4140-4149.	4.0	5
23	Crystal structure, vibrational, electrical, optical and DFT study of C2H10N2(IO3)2.HIO3. Journal of Molecular Structure, 2020, 1215, 128254.	3.6	3
24	Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angewandte Chemie, 2021, 133, 10282-10290.	2.0	1