
Xiaogang Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8853158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils. LWT - Food Science and Technology, 2022, 154, 112605.	2.5	14
2	Improvement of O/W emulsion performance by adjusting the interaction between gelatin and bacterial cellulose nanofibrils. Carbohydrate Polymers, 2022, 276, 118806.	5.1	14
3	Organic Nanoparticles Based on D-A-D Small Molecule: Self-Assembly, Photophysical Properties, and Synergistic Photodynamic/Photothermal Effects. Materials, 2022, 15, 502.	1.3	2
4	Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy. Materials Today Bio, 2022, 13, 100198.	2.6	28
5	Nanocellulose from bamboo shoots as perfect Pickering stabilizer: Effect of the emulsification process on the interfacial and emulsifying properties. Food Bioscience, 2022, 46, 101596.	2.0	10
6	A multiscale screening strategy for the identification of novel xanthine oxidase inhibitors based on the pharmacological features of febuxostat analogues. New Journal of Chemistry, 2022, 46, 6549-6559.	1.4	5
7	Microencapsulation of astaxanthin based on emulsion solvent evaporation and subsequent spray drying. Journal of Food Science, 2022, 87, 998-1008.	1.5	3
8	In-situ growth of boronic acid-decorated metal-organic framework on Fe3O4 nanospheres for specific enrichment of cis-diol containing nucleosides. Analytica Chimica Acta, 2022, 1206, 339772.	2.6	22
9	Fused deposition modeling of high-loading-fraction bonded Fe–Si–Al/PP magnets. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	0
10	Cobalt Oxyhydroxide Nanoflakes/Cellulose Composite Membranes with Enhanced Detection of Ascorbic Acid. ACS Applied Polymer Materials, 2022, 4, 469-478.	2.0	4
11	A controllable staining colorimetric method based on carboxylated cellulose membranes for early-warning and semi-quantitative detection of aflatoxins in water. Analyst, The, 2022, 147, 2549-2557.	1.7	4
12	Novel insecticidal 1,6â€dihydroâ€6â€iminopyridazine derivatives as competitive antagonists of insect <scp>RDL GABA</scp> receptors. Pest Management Science, 2022, 78, 2872-2882.	1.7	2
13	5-(4-Pyridinyl)-3-isothiazolols as Competitive Antagonists of Insect GABA Receptors: Design, Synthesis, and a New Mechanism Leading to Insecticidal Effects. Journal of Agricultural and Food Chemistry, 2022, 70, 5765-5772.	2.4	3
14	A novel electrostatic drive strategy to prepare glutathione-capped gold nanoclusters embedded quaternized cellulose membranes fluorescent colorimetric sensor for Pb(II) and Hg(II) ions detection. Sensors and Actuators B: Chemical, 2022, 368, 132046.	4.0	26
15	Poly (Vinyl Alcohol) Composite Membrane with Polyamidoamine Dendrimers for Efficient Separation of CO2/H2 and CO2/N2. Journal of Polymers and the Environment, 2022, 30, 4193-4200.	2.4	2
16	Novel peapod-like Ni2P@N-doped carbon nanorods array on carbon fiber for efficient electrocatalytic urea oxidation and hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 28730-28739.	3.8	17
17	Boronic acid grafted metal-organic framework for selective enrichment of cis-diol-containing compounds. Journal of Chromatography A, 2022, 1677, 463281.	1.8	12
18	In situ nano-assembly of Mg/Al LDH embedded on phosphorylated cellulose microspheres for tetracycline hydrochloride removal. Cellulose, 2021, 28, 301-316.	2.4	15

#	Article	IF	CITATIONS
19	Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue. International Journal of Biological Macromolecules, 2021, 166, 1419-1428.	3.6	13
20	Functionalized phosphorylated cellulose microspheres: Design, characterization and ciprofloxacin loading and releasing properties. Carbohydrate Polymers, 2021, 254, 117421.	5.1	20
21	Ag-doped TiO2 immobilized cellulose-derived carbon beads: One-Pot preparation, photocatalytic degradation performance and mechanism of ceftriaxone sodium. Applied Surface Science, 2021, 542, 148724.	3.1	47
22	Fabrication of PVA Nanofibers Grafted with Octaamino-POSS and their Application in Heavy Metal Adsorption. Journal of Polymers and the Environment, 2021, 29, 1566-1575.	2.4	21
23	Porous Co2P film coated on carbon fiber as highly performance electrocatalyst toward overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 31-40.	3.8	13
24	Natural Polymer Composites for Environmental Applications. , 2021, , 1725-1741.		0
25	pH-Responsive Cellulose-Based Microspheres Designed as an Effective Oral Delivery System for Insulin. ACS Omega, 2021, 6, 2734-2741.	1.6	12
26	Cobalt phthalocyanine-based nanodots as efficient catalysts for chemical conversion of CO2 under ambient conditions. Journal of Materials Science, 2021, 56, 10990-10999.	1.7	9
27	Highly Oriented Thermoplastic Poly (vinyl alcohol) Films by Uniaxial Drawing: Effect of Stretching Temperature and Draw Ratio. Journal of Polymers and the Environment, 2021, 29, 3263-3270.	2.4	2
28	Oxidase Mimetic Activity of a Metalloporphyrin-Containing Porous Organic Polymer and Its Applications for Colorimetric Detection of Both Ascorbic Acid and Glutathione. ACS Sustainable Chemistry and Engineering, 2021, 9, 5412-5421.	3.2	58
29	Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends in Food Science and Technology, 2021, 110, 573-583.	7.8	82
30	Characterization and antibacterial properties of epsilon-poly- l-lysine grafted multi-functional cellulose beads. Carbohydrate Polymers, 2021, 262, 117902.	5.1	15
31	Zeolitic imidazolate framework-8/ fluorinated graphene coated SiO2 composites for pipette tip solid-phase extraction of chlorophenols in environmental and food samples. Talanta, 2021, 228, 122229.	2.9	27
32	Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils. Food Chemistry, 2021, 349, 129163.	4.2	28
33	Exploration of Novel Xanthine Oxidase Inhibitors Based on 1,6-Dihydropyrimidine-5-Carboxylic Acids by an Integrated in Silico Study. International Journal of Molecular Sciences, 2021, 22, 8122.	1.8	5
34	Beeswax: A potential self-emulsifying agent for the construction of thermal-sensitive food W/O emulsion. Food Chemistry, 2021, 349, 129203.	4.2	38
35	Effect of bagasse content on low frequency acoustic performance of soy oilâ€based biodegradable foams filled with bagasse and regulation mechanism analysis. Journal of Applied Polymer Science, 2021, 138, 51457.	1.3	4
36	In Silico Screening of Novel α1-GABAA Receptor PAMs towards Schizophrenia Based on Combined Modeling Studies of Imidazo [1,2-a]-Pyridines. International Journal of Molecular Sciences, 2021, 22, 9645.	1.8	10

#	Article	IF	CITATIONS
37	Triphenylamine-perylene diimide conjugate-based organic nanoparticles for photoacoustic imaging and cancer phototherapy. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111841.	2.5	16
38	Aminated chitosan/cellulose nanocomposite microspheres designed for efficient removal of low-concentration sulfamethoxazole from water. Journal of Molecular Liquids, 2021, 339, 116407.	2.3	13
39	Early-warning and semi-quantitative colorimetric detection of Hg(II) with lysine-bis-Schiff base cellulose membranes designed by simple interfacial covalent bonding. Sensors and Actuators B: Chemical, 2021, 346, 130435.	4.0	21
40	Ni4Mo alloy nanosheets coating on carbon tube arrays as high-performance electrocatalyst toward overall water splitting Journal of Alloys and Compounds, 2021, 886, 161180.	2.8	17
41	Cobalt-Doped Carbon Quantum Dots with Peroxidase-Mimetic Activity for Ascorbic Acid Detection through Both Fluorometric and Colorimetric Methods. ACS Applied Materials & (1), 1021, 13, 49453-49461.	4.0	59
42	Exploration of Novel Hepatitis B Virus Capsid Assembly Modulators by Integrated Molecular Simulations. ChemistrySelect, 2021, 6, 12524-12536.	0.7	1
43	Adsorption of low concentrations of bromide ions from water by cellulose-based beads modified with TEMPO-mediated oxidation and Fe(III) complexation. Journal of Hazardous Materials, 2020, 384, 121195.	6.5	25
44	Coagulation mechanism of cellulose/metal nanohybrids through a simple one-step process and their interaction with Cr (VI). International Journal of Biological Macromolecules, 2020, 142, 404-411.	3.6	12
45	Highly efficient removal of amoxicillin from water by Mg-Al layered double hydroxide/cellulose nanocomposite beads synthesized through in-situ coprecipitation method. International Journal of Biological Macromolecules, 2020, 149, 93-100.	3.6	62
46	Self-Assembled Naphthalimide Conjugated Porphyrin Nanomaterials with D–A Structure for PDT/PTT Synergistic Therapy. Bioconjugate Chemistry, 2020, 31, 663-672.	1.8	47
47	A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity. Carbohydrate Polymers, 2020, 231, 115694.	5.1	34
48	Red-Emissive Ruthenium-Containing Carbon Dots for Bioimaging and Photodynamic Cancer Therapy. ACS Applied Nano Materials, 2020, 3, 869-876.	2.4	108
49	Computationally exploring novel xanthine oxidase inhibitors using docking-based 3D-QSAR, molecular dynamics, and virtual screening. New Journal of Chemistry, 2020, 44, 19276-19287.	1.4	7
50	Exploring the Interaction Mechanism of Desmethyl-broflanilide in Insect GABA Receptors and Screening Potential Antagonists by <i>In Silico</i> Simulations. Journal of Agricultural and Food Chemistry, 2020, 68, 14768-14780.	2.4	15
51	Oleogel Films Through the Pickering Effect of Bacterial Cellulose Nanofibrils Featuring Interfacial Network Stabilization. Journal of Agricultural and Food Chemistry, 2020, 68, 9150-9157.	2.4	18
52	Gd (III) DOTAâ€Functionalized Phthalocyanine Nanodots for Magnetic Resonance Imaging and Photothermal/Photodynamic Therapy. Advanced Materials Interfaces, 2020, 7, 2000713.	1.9	7
53	Superclear, Porous Cellulose Membranes with Chitosan-Coated Nanofibers for Visualized Cutaneous Wound Healing Dressing. ACS Applied Materials & Interfaces, 2020, 12, 24370-24379.	4.0	105
54	Novel stable pickering emulsion based solid foams efficiently stabilized by microcrystalline cellulose/chitosan complex particles. Food Hydrocolloids, 2020, 108, 106044.	5.6	33

#	Article	IF	CITATIONS
55	Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan. Food Chemistry, 2020, 331, 127108.	4.2	68
56	In silico Design of Novel HIV-1 NNRTIs Based on Combined Modeling Studies of Dihydrofuro[3,4-d]pyrimidines. Frontiers in Chemistry, 2020, 8, 164.	1.8	26
57	Simple, Rapid, and Highly Sensitive Colorimetric Sensor Strips from a Porous Cellulose Membrane Stained with Victoria Blue B for Efficient Detection of Trace Cd(II) in Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 5184-5191.	3.2	27
58	An easy and unique design strategy for insoluble humic acid/cellulose nanocomposite beads with highly enhanced adsorption performance of low concentration ciprofloxacin in water. Bioresource Technology, 2020, 302, 122812.	4.8	26
59	MPEG grafted alkylated carboxymethyl chitosan as a high-efficiency demulsifier for O/W crude oil emulsions. Carbohydrate Polymers, 2020, 241, 116309.	5.1	35
60	Synthesis of MOF@COF Hybrid Magnetic Adsorbent for Microextraction of Sulfonamides in Food and Environmental Samples. Food Analytical Methods, 2020, 13, 1346-1356.	1.3	41
61	Concentrated O/W Pickering emulsions stabilized by soy protein/cellulose nanofibrils: Influence of pH on the emulsification performance. Food Hydrocolloids, 2020, 108, 106025.	5.6	61
62	X-ray shielding structural and properties design for the porous transparent BaSO4/cellulose nanocomposite membranes. International Journal of Biological Macromolecules, 2019, 139, 793-800.	3.6	26
63	Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydrate Polymers, 2019, 223, 115065.	5.1	54
64	Regenerable bagasse-based carbon activated by in situ formation of zero-valent zinc microparticles for high-performance degradation of amoxicillin in water. Environmental Science and Pollution Research, 2019, 26, 27677-27686.	2.7	6
65	Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions. Food Hydrocolloids, 2019, 97, 105180.	5.6	74
66	Organic small molecular nanoparticles based on self-assembly of amphiphilic fluoroporphyrins for photodynamic and photothermal synergistic cancer therapy. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110345.	2.5	37
67	Cellulose-Based Strips Designed Based on a Sensitive Enzyme Colorimetric Assay for the Low Concentration of Glucose Detection. Analytical Chemistry, 2019, 91, 15461-15468.	3.2	75
68	Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides. Analytica Chimica Acta, 2019, 1089, 66-77.	2.6	99
69	Bagasse as functional fillers to improve and control biodegradability of soy oil-based rigid polyurethane foams. Korean Journal of Chemical Engineering, 2019, 36, 1740-1745.	1.2	12
70	Bagasse-based adsorbent with nitric acid esterification and Fe(iii) chelation for the highly efficient removal of low concentration phosphate from water. New Journal of Chemistry, 2019, 43, 2966-2973.	1.4	7
71	Soy Oilâ€Based Rigid Polyurethane Biofoams Obtained by a Facile Oneâ€Pot Process and Reinforced with Hydroxylâ€Functionalized Multiwalled Carbon Nanotube. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 319-328.	0.8	8
72	Small-Molecule Porphyrin-Based Organic Nanoparticles with Remarkable Photothermal Conversion Efficiency for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 21408-21416.	4.0	92

#	Article	IF	CITATIONS
73	Facile Fabrication of Environmentally-Friendly Hydroxyl-Functionalized Multiwalled Carbon Nanotubes/Soy Oil-Based Polyurethane Nanocomposite Bioplastics with Enhanced Mechanical, Thermal, and Electrical Conductivity Properties. Polymers, 2019, 11, 763.	2.0	6
74	Cr(VI) adsorption performance and mechanism of an effective activated carbon prepared from bagasse with a one-step pyrolysis and ZnCl2 activation method. Cellulose, 2019, 26, 4921-4934.	2.4	52
75	<i>In silico</i> study of 3-hydroxypyrimidine-2,4-diones as inhibitors of HIV RT-associated RNase H using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore models. New Journal of Chemistry, 2019, 43, 17004-17017.	1.4	21
76	Adsorption and Desorption Performance and Mechanism of Tetracycline Hydrochloride by Activated Carbon-Based Adsorbents Derived from Sugar Cane Bagasse Activated with ZnCl2. Molecules, 2019, 24, 4534.	1.7	44
77	Porous structured cellulose microsphere acts as biosensor for glucose detection with "signal-and-color―output. Carbohydrate Polymers, 2019, 205, 295-301.	5.1	19
78	Effects and mechanisms of ultrasound- and alkali-assisted enzymolysis on production of water-soluble yeast β-glucan. Bioresource Technology, 2019, 273, 394-403.	4.8	39
79	Facile synthesis and low concentration tylosin adsorption performance of chitosan/cellulose nanocomposite microspheres. Carbohydrate Polymers, 2019, 206, 633-640.	5.1	39
80	Ln(III) chelates-functionalized carbon quantum dots: Synthesis, optical studies and multimodal bioimaging applications. Colloids and Surfaces B: Biointerfaces, 2019, 175, 272-280.	2.5	42
81	Insights into the key structural features of N1-ary-benzimidazols as HIV-1 NNRTIs using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore modeling. Structural Chemistry, 2019, 30, 385-397.	1.0	22
82	Constructing a Continuous Flow Bioreactor Based on a Hierarchically Porous Cellulose Monolith for Ultrafast and Nonstop Enzymatic Esterification/Transesterification. ACS Sustainable Chemistry and Engineering, 2019, 7, 2056-2063.	3.2	29
83	O/W Pickering Emulsion Templated Organo-hydrogels with Enhanced Mechanical Strength and Energy Storage Capacity. ACS Applied Bio Materials, 2019, 2, 480-487.	2.3	26
84	Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior. Food Hydrocolloids, 2019, 88, 180-189.	5.6	101
85	Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes. Carbohydrate Polymers, 2018, 188, 143-150.	5.1	77
86	Superhydrophobic modification of cellulose film through light curing polyfluoro resin in situ. Cellulose, 2018, 25, 1617-1623.	2.4	14
87	Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols. International Journal of Biological Macromolecules, 2018, 115, 786-791.	3.6	78
88	Ethyl cellulose aqueous dispersions: A fascinating supporter for increasing the solubility and sustained-release of cinnamaldehyde. Journal of Food Processing and Preservation, 2018, 42, e13696.	0.9	1
89	Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohydrate Polymers, 2017, 166, 320-328.	5.1	56
90	A novel candidate for wound dressing: Transparent porous maghemite/cellulose nanocomposite membranes with controlled release of doxorubicin from a simple approach. Materials Science and Engineering C, 2017, 79, 84-92.	3.8	25

#	Article	IF	CITATIONS
91	Facile Design of Green Engineered Cellulose/Metal Hybrid Macrogels for Efficient Trace Phosphate Removal. Industrial & Engineering Chemistry Research, 2017, 56, 7525-7533.	1.8	20
92	Interfacial Solid-Phase Chemical Modification with Mannich Reaction and Fe(III) Chelation for Designing Lignin-Based Spherical Nanoparticle Adsorbents for Highly Efficient Removal of Low Concentration Phosphate from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 6539-6547.	3.2	80
93	Improved Solid-Phase Synthesis of Phosphorylated Cellulose Microsphere Adsorbents for Highly Effective Pb ²⁺ Removal from Water: Batch and Fixed-Bed Column Performance and Adsorption Mechanism. ACS Sustainable Chemistry and Engineering, 2017, 5, 5108-5117.	3.2	108
94	Highly selective allylic oxidation of cyclohexene over molybdenum-doped manganese oxide catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 567-578.	0.8	3
95	Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. International Journal of Biological Macromolecules, 2017, 96, 518-523.	3.6	156
96	Advances in Soy Protein-Based Nanocomposites. , 2017, , 39-66.		0
97	Cellulose gel dispersions: fascinating green particles for the stabilization of oil/water Pickering emulsion. Cellulose, 2017, 24, 207-217.	2.4	36
98	Rapidly and Effectively Improving the Mechanical Properties of Polyelectrolyte Complex Nanofibers through Microwave Treatment. Advanced Engineering Materials, 2017, 19, 1600483.	1.6	11
99	A novel porous epoxy acrylate resin monolith prepared by the low-temperature phase separation photopolymerization. Journal of Adhesion Science and Technology, 2017, 31, 690-698.	1.4	1
100	Probiotics in cellulose houses: Enhanced viability and targeted delivery of Lactobacillus plantarum. Food Hydrocolloids, 2017, 62, 66-72.	5.6	37
101	Fabrication of Core/Shell Nanofibers with Desirable Mechanical and Antibacterial Properties by Pickering Emulsion Electrospinning. Macromolecular Materials and Engineering, 2017, 302, 1600364.	1.7	40
102	Porous Cellulose Microgel Particle: A Fascinating Host for the Encapsulation, Protection, and Delivery of <i>Lactobacillus plantarum</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 3430-3436.	2.4	37
103	Removal of Heavy Metal Ions from Water by Magnetic Cellulose-Based Beads with Embedded Chemically Modified Magnetite Nanoparticles and Activated Carbon. ACS Sustainable Chemistry and Engineering, 2016, 4, 3960-3969.	3.2	179
104	Adsorptive removal of Lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite. Carbohydrate Polymers, 2016, 151, 640-648.	5.1	68
105	A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose, 2016, 23, 1349-1361.	2.4	52
106	Synthesis of selenium nanoparticles with mesoporous silica drug-carrier shell for programmed responsive tumor targeted synergistic therapy. RSC Advances, 2016, 6, 2171-2175.	1.7	14
107	Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Applied Surface Science, 2016, 369, 492-500.	3.1	173
108	A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohydrate Polymers, 2016, 143, 231-238.	5.1	59

#	Article	IF	CITATIONS
109	A strategy for improving mechanical properties of composite nanofibers through surface functionalization of fillers with hyperbranched polyglycerol. Journal of Materials Science, 2016, 51, 797-808.	1.7	37
110	Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chemistry, 2016, 197, 250-256.	4.2	77
111	A Pseudoâ€Model Strategy Combining Experiment and Model to Investigate the Targeting Efficiency of Injected Magnetic Nanoparticles as Therapeutics Carriers. Advanced Engineering Materials, 2015, 17, 1511-1517.	1.6	0
112	Tailor-made magnetic nanocarriers with pH-induced charge reversal and pH-responsiveness to guide subcellular release of doxorubicin. Journal of Materials Science, 2015, 50, 2429-2442.	1.7	17
113	An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres. Bioresource Technology, 2015, 194, 403-406.	4.8	201
114	Surface modification of cellulose scaffold with polypyrrole for the fabrication of flexible supercapacitor electrode with enhanced capacitance. RSC Advances, 2015, 5, 87266-87276.	1.7	44
115	A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Advances, 2015, 5, 73416-73423.	1.7	49
116	Functionalization of graphene with hyperbranched polyglycerol for stable aqueous dispersion. Functional Materials Letters, 2015, 08, 1550068.	0.7	17
117	Systematic study on substituting petroleum-based polyols with soy-based polyol for developing renewable hybrid biofoam by self-catalyzing/rising process. Industrial Crops and Products, 2015, 77, 175-179.	2.5	11
118	Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose, 2015, 22, 407-420.	2.4	136
119	Toughening of electrospun poly(l-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. Journal of Materials Science, 2015, 50, 1435-1445.	1.7	74
120	Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking. Materials Science and Engineering C, 2015, 46, 41-51.	3.8	46
121	Preparation and properties of nanodiamond/poly(lactic acid) composite nanofiber scaffolds. Fibers and Polymers, 2014, 15, 2544-2552.	1.1	44
122	Effect of thermal annealing on mechanical properties of polyelectrolyte complex nanofiber membranes. Fibers and Polymers, 2014, 15, 1406-1413.	1.1	26
123	Mechanical reinforcement of electrospun water-soluble polymer nanofibers using nanodiamonds. Polymer Composites, 2013, 34, 1735-1744.	2.3	35
124	New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Research International, 2013, 52, 387-400.	2.9	116
125	Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Industrial Crops and Products, 2013, 47, 13-19.	2.5	146
126	Green Composites From Soyâ€Based Biopolyurethane With Microcrystalline Cellulose. Macromolecular Materials and Engineering, 2013, 298, 412-418.	1.7	19

#	Article	IF	CITATIONS
127	Phase Structure and Properties of Toughened Poly(L-Lactic Acid)/Glycidyl Methacrylate Grafted Poly(Ethylene Octane) Blends Adjusted by the Stereocomplex. Polymer-Plastics Technology and Engineering, 2013, 52, 1250-1258.	1.9	12
128	Waterâ€Blown Rigid Biofoams from Soyâ€Based Biopolyurethane and Microcrystalline Cellulose. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 2057-2065.	0.8	16
129	Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. Journal of Chromatography A, 2010, 1217, 5922-5929.	1.8	92
130	Immobilization of Penicillin G Acylase in Epoxy-Activated Magnetic Cellulose Microspheres for Improvement of Biocatalytic Stability and Activities. Biomacromolecules, 2010, 11, 2896-2903.	2.6	114
131	High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. Journal of Hazardous Materials, 2009, 171, 340-347.	6.5	293
132	In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. Journal of Materials Chemistry, 2009, 19, 3538.	6.7	204