Haixue Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/885314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LAMP assay coupled with CRISPR/Cas12a system for portable detection of African swine fever virus. Transboundary and Emerging Diseases, 2022, 69, .	1.3	23
2	A QP509L/QP383R-Deleted African Swine Fever Virus Is Highly Attenuated in Swine but Does Not Confer Protection against Parental Virus Challenge. Journal of Virology, 2022, 96, JVI0150021.	1.5	18
3	Induction of HOXA3 by Porcine Reproductive and Respiratory Syndrome Virus Inhibits Type I Interferon Response through Negative Regulation of HO-1 Transcription. Journal of Virology, 2022, 96, JVI0186321.	1.5	14
4	Senecavirus A 2B protein suppresses type I interferon production by inducing the degradation of MAVS. Molecular Immunology, 2022, 142, 11-21.	1.0	9
5	Preparation and epitope mapping of monoclonal antibodies against African swine fever virus P30 protein. Applied Microbiology and Biotechnology, 2022, 106, 1199-1210.	1.7	10
6	African Swine Fever Virus Regulates Host Energy and Amino Acid Metabolism To Promote Viral Replication. Journal of Virology, 2022, 96, JVI0191921.	1.5	28
7	Senecavirus a 3D Interacts with NLRP3 to Induce IL-1Î ² Production by Activating NF-κB and Ion Channel Signals. Microbiology Spectrum, 2022, 10, e0209721.	1.2	12
8	Molecular Mechanism of Porcine Epidemic Diarrhea Virus Cell Tropism. MBio, 2022, 13, e0373921.	1.8	16
9	Host Cells Actively Resist Porcine Reproductive and Respiratory Syndrome Virus Infection via the IRF8-MicroRNA-10a-SRP14 Regulatory Pathway. Journal of Virology, 2022, 96, e0000322.	1.5	9
10	FMDV Leader Protein Interacts with the NACHT and LRR Domains of NLRP3 to Promote IL- $1\hat{l}^2$ Production. Viruses, 2022, 14, 22.	1.5	3
11	Peste Des Petits Ruminants Virus N Protein Is a Critical Proinflammation Factor That Promotes MyD88 and NLRP3 Complex Assembly. Journal of Virology, 2022, 96, e0030922.	1.5	8
12	FoxJ1 inhibits African swine fever virus replication and viral S273R protein decreases the expression of FoxJ1 to impair its antiviral effect. Virologica Sinica, 2022, 37, 445-454.	1.2	9
13	FMDV 3A Antagonizes the Effect of ANXA1 to Positively Modulate Viral Replication. Journal of Virology, 2022, 96, .	1.5	7
14	Combinational Deletions of MGF360-9L and MGF505-7R Attenuated Highly Virulent African Swine Fever Virus and Conferred Protection against Homologous Challenge. Journal of Virology, 2022, 96, .	1.5	24
15	Porcine Picornavirus 3C Protease Degrades PRDX6 to Impair PRDX6-mediated Antiviral Function. Virologica Sinica, 2021, 36, 948-957.	1.2	7
16	Picornavirus 3C – a protease ensuring virus replication and subverting host responses. Journal of Cell Science, 2021, 134, .	1.2	15
17	Activation and Inhibition of the NLRP3 Inflammasome by RNA Viruses. Journal of Inflammation Research, 2021, Volume 14, 1145-1163.	1.6	38
18	African Swine Fever Virus MGF-110-9L-deficient Mutant Has Attenuated Virulence in Pigs. Virologica Sinica, 2021, 36, 187-195.	1.2	50

#	Article	IF	CITATIONS
19	JMJD6 negatively regulates cytosolic RNA induced antiviral signaling by recruiting RNF5 to promote activated IRF3 K48 ubiquitination. PLoS Pathogens, 2021, 17, e1009366.	2.1	15
20	African Swine Fever Virus MGF-505-7R Negatively Regulates cGAS–STING-Mediated Signaling Pathway. Journal of Immunology, 2021, 206, 1844-1857.	0.4	98
21	African Swine Fever Virus E120R Protein Inhibits Interferon Beta Production by Interacting with IRF3 To Block Its Activation. Journal of Virology, 2021, 95, e0082421.	1.5	54
22	African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. Journal of Biological Chemistry, 2021, 297, 101190.	1.6	47
23	Evaluation of Antibody Response in Sows after Vaccination with Senecavirus A Vaccine and the Effect of Maternal Antibody Transfer on Antibody Dynamics in Offspring. Vaccines, 2021, 9, 1066.	2.1	7
24	Foot-and-mouth disease virus VP3 protein acts as a critical proinflammatory factor by promoting toll-like receptor 4-mediated signaling. Journal of Virology, 2021, 95, e0112021.	1.5	5
25	The Insufficient Activation of RIG-l–Like Signaling Pathway Contributes to Highly Efficient Replication of Porcine Picornaviruses in IBRS-2 Cells. Molecular and Cellular Proteomics, 2021, 20, 100147.	2.5	11
26	Foot-and-Mouth Disease Virus Inhibits RIP2 Protein Expression to Promote Viral Replication. Virologica Sinica, 2021, 36, 608-622.	1.2	14
27	African Swine Fever Virus F317L Protein Inhibits NF-κB Activation To Evade Host Immune Response and Promote Viral Replication. MSphere, 2021, 6, e0065821.	1.3	32
28	Degradation of Host Proteins and Apoptosis Induced by Foot-and-Mouth Disease Virus 3C Protease. Pathogens, 2021, 10, 1566.	1.2	2
29	Intercellular transmission of Seneca Valley virus mediated by exosomes. Veterinary Research, 2020, 51, 91.	1.1	7
30	Advances in Foot-and-Mouth Disease Virus Proteins Regulating Host Innate Immunity. Frontiers in Microbiology, 2020, 11, 2046.	1.5	12
31	DDX56 inhibits type I interferon by disrupting assembly of IRF3–IPO5 to inhibit IRF3 nucleus import. Journal of Cell Science, 2020, 133, .	1.2	15
32	Seneca Valley Virus 3Cpro Cleaves PABPC1 to Promote Viral Replication. Pathogens, 2020, 9, 443.	1.2	15
33	The Nucleoprotein and Phosphoprotein of Peste des Petits Ruminants Virus Inhibit Interferons Signaling by Blocking the JAK-STAT Pathway. Viruses, 2019, 11, 629.	1.5	19
34	The DEAD-Box RNA Helicase DDX1 Interacts with the Viral Protein 3D and Inhibits Foot-and-Mouth Disease Virus Replication. Virologica Sinica, 2019, 34, 610-617.	1.2	23
35	Poly (rC) binding protein 2 interacts with VPO and increases the replication of the foot-and-mouth disease virus. Cell Death and Disease, 2019, 10, 516.	2.7	12
36	Response to comment on "First detection of footâ€andâ€mouth disease virus O/MEâ€SA/Ind2001 in Chinaâ€ Transboundary and Emerging Diseases, 2019, 66, 1095-1096.	1.3	0

#	Article	IF	CITATIONS
37	Cellular DNAJA3, a Novel VP1-Interacting Protein, Inhibits Foot-and-Mouth Disease Virus Replication by Inducing Lysosomal Degradation of VP1 and Attenuating Its Antagonistic Role in the Beta Interferon Signaling Pathway. Journal of Virology, 2019, 93, .	1.5	40
38	Foot-and-Mouth Disease Virus Antagonizes NOD2-Mediated Antiviral Effects by Inhibiting NOD2 Protein Expression. Journal of Virology, 2019, 93, .	1.5	26
39	Seneca Valley Virus 3Cpro abrogates the IRF3- and IRF7-mediated innate immune response by degrading IRF3 and IRF7. Virology, 2018, 518, 1-7.	1.1	64
40	Immunogenicity and protective efficacy of an inactivated cell culture-derived Seneca Valley virus vaccine in pigs. Vaccine, 2018, 36, 841-846.	1.7	42
41	Seneca Valley Virus 3C protease negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. Antiviral Research, 2018, 160, 183-189.	1.9	35
42	RIC-I is responsible for activation of type I interferon pathway in Seneca Valley virus-infected porcine cells to suppress viral replication. Virology Journal, 2018, 15, 162.	1.4	17
43	The Distribution of Different Clades of Seneca Valley Viruses in Guangdong Province, China. Virologica Sinica, 2018, 33, 394-401.	1.2	17
44	Foot-and-Mouth Disease Virus Counteracts on Internal Ribosome Entry Site Suppression by G3BP1 and Inhibits G3BP1-Mediated Stress Granule Assembly via Post-Translational Mechanisms. Frontiers in Immunology, 2018, 9, 1142.	2.2	35
45	Review of Seneca Valley Virus: A Call for Increased Surveillance and Research. Frontiers in Microbiology, 2018, 9, 940.	1.5	46
46	First detection of foot-and-mouth disease virus O/ME-SA/Ind2001 in China. Transboundary and Emerging Diseases, 2018, 65, 2027-2031.	1.3	17
47	Footâ€andâ€mouth disease virus nonstructural protein 2B interacts with cyclophilin A, modulating virus replication. FASEB Journal, 2018, 32, 6706-6723.	0.2	21
48	Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication. Cell Death and Disease, 2017, 8, e2747-e2747.	2.7	44
49	Emergence of novel Seneca Valley virus strains in China, 2017. Transboundary and Emerging Diseases, 2017, 64, 1024-1029.	1.3	67
50	Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication. Virology, 2017, 509, 222-231.	1.1	43
51	The Kinase STK3 Interacts with the Viral Structural Protein VP1 and Inhibits Foot-and-Mouth Disease Virus Replication. BioMed Research International, 2017, 2017, 1-8.	0.9	4
52	Genetic Characterization of a Novel Mutant of Peste Des Petits Ruminants Virus Isolated from <i>Capra ibex</i> in China during 2015. BioMed Research International, 2016, 2016, 1-9.	0.9	27
53	Induction of systemic IFITM3 expression does not effectively control foot-and-mouth disease viral infection in transgenic pigs. Veterinary Microbiology, 2016, 191, 20-26.	0.8	3
54	Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-Î ² signaling pathway. Scientific Reports, 2016, 6, 21888.	1.6	55

#	Article	IF	CITATIONS
55	Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus. Virologica Sinica, 2016, 31, 249-257.	1.2	5
56	Parapoxvirus orf virus infection induces an increase in interleukin-8, tumour necrosis factor-α, and decorin in goat skin fibroblast cells. Journal of Veterinary Research (Poland), 2016, 60, 239-243.	0.3	2
57	Foot-and-Mouth Disease Virus Viroporin 2B Antagonizes RIG-I-Mediated Antiviral Effects by Inhibition of Its Protein Expression. Journal of Virology, 2016, 90, 11106-11121.	1.5	86
58	Esterase D enhances type I interferon signal transduction to suppress foot-and-mouth disease virus replication. Molecular Immunology, 2016, 75, 112-121.	1.0	16
59	The VP1 S154D mutation of type Asia1 foot-and-mouth disease virus enhances viral replication and pathogenicity. Infection, Genetics and Evolution, 2016, 39, 113-119.	1.0	15
60	The VP3 structural protein of footâ€andâ€mouth disease virus inhibits the IFNâ€Î² signaling pathway. FASEB Journal, 2016, 30, 1757-1766.	0.2	61
61	The rescue and evaluation of FLAG and HIS epitope-tagged Asia 1 type foot-and-mouth disease viruses. Virus Research, 2016, 213, 246-254.	1.1	7
62	Evaluation of a combinatorial RNAi lentivirus vector targeting foot-and-mouth disease virus in vitro and in vivo. Molecular Medicine Reports, 2015, 12, 6672-6678.	1.1	7
63	Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses. Veterinary Research, 2015, 46, 127.	1.1	25
64	Establishment and evaluation of a murine αvβ3-integrin-expressing cell line with increased susceptibility to Foot-and-mouth disease virus. Journal of Veterinary Science, 2015, 16, 265.	0.5	3
65	Recovery of infectious type Asia1 foot-and-mouth disease virus from suckling mice directly inoculated with an RNA polymerase I/II-driven unidirectional transcription plasmid. Virus Research, 2015, 208, 73-81.	1.1	11
66	Cross-protective efficacy of engineering serotype A foot-and-mouth disease virus vaccine against the two pandemic strains in swine. Vaccine, 2015, 33, 5772-5778.	1.7	18
67	Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication. Journal of Proteome Research, 2015, 14, 4194-4206.	1.8	16
68	The Laboratory of Genetics and Physiology 2: Emerging Insights into the Controversial Functions of This RIG-I-Like Receptor. BioMed Research International, 2014, 2014, 1-7.	0.9	37
69	Role of MicroRNAs in Hepatocellular Carcinoma. Hepatitis Monthly, 2014, 14, e18672.	0.1	60
70	Type I interferon-mediated immune response against influenza A virus is attenuated in the absence of p53. Biochemical and Biophysical Research Communications, 2014, 454, 189-195.	1.0	18
71	Adjuvant Effects of L. acidophilus LW1 on Immune Responses to the Foot-and-Mouth Disease Virus DNA Vaccine in Mice. PLoS ONE, 2014, 9, e104446.	1.1	13
72	Engineering Foot-and-Mouth Disease Viruses with Improved Growth Properties for Vaccine Development. PLoS ONE, 2013, 8, e55228.	1.1	30

#	Article	IF	CITATIONS
73	Induction of Partial Protection against Foot and Mouth Disease Virus in Guinea Pigs by Neutralization with the Integrin β6-1 Subunit. Viruses, 2013, 5, 1114-1130.	1.5	9
74	Cross-Protective Efficacy of Recombinant Transferrin-Binding Protein A of Haemophilus parasuis in Guinea Pigs. Vaccine Journal, 2013, 20, 912-919.	3.2	20
75	Complete Genome Sequence of the Porcine Kobuvirus Variant CH/HNXX-4/2012. Journal of Virology, 2012, 86, 11947-11947.	1.5	10
76	Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome in Jiangxi province, China. Irish Veterinary Journal, 2012, 65, 14.	0.8	11
77	Genetic characterization of a new pandemic Southeast Asia topotype strain of serotype O foot-and-mouth disease virus isolated in China during 2010. Virus Genes, 2012, 44, 80-88.	0.7	22
78	Proteomics Analysis of Porcine Serum Proteins by LC-MS/MS after Foot-and-Mouth Disease Virus (FMDV) Infection. Journal of Veterinary Medical Science, 2011, 73, 1569-1572.	0.3	9
79	Diagnosis and phylogenetic analysis of Orf virus from goats in China: a case report. Virology Journal, 2010, 7, 78.	1.4	40
80	Recovery of infectious foot-and-mouth disease virus from full-length genomic cDNA clones using an RNA polymerase I system. Acta Biochimica Et Biophysica Sinica, 2009, 41, 998-1007.	0.9	13
81	Development of a hamster kidney cell line expressing stably T7 RNA polymerase using retroviral gene transfer technology for efficient rescue of infectious foot-and-mouth disease virus. Journal of Virological Methods, 2009, 156, 129-137.	1.0	15
82	Engineering infectious foot-and-mouth disease virus in vivo from a full-length genomic cDNA clone of the A/AKT/58 strain. Science in China Series C: Life Sciences, 2009, 52, 155-162.	1.3	13
83	Infective viruses produced from full-length complementary DNA of swine vesicular disease viruses HK/70 strain. Science Bulletin, 2006, 51, 2072-2078.	1.7	3