Dongsheng Wen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8852964/dongsheng-wen-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

277	12,499	50	103
papers	citations	h-index	g-index
303	14,357 ext. citations	5.3	7.09
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
277	Multi-Objective Optimization of Low Reynolds Number Airfoil Using Convolutional Neural Network and Non-Dominated Sorting Genetic Algorithm. <i>Aerospace</i> , 2022 , 9, 35	2.5	4
276	Ni-Fe/Reduced Graphene Oxide Nanocomposites for Hexavalent Chromium Reduction in an Aqueous Environment <i>ACS Omega</i> , 2022 , 7, 4041-4051	3.9	0
275	Flow resistance and convective heat transfer by elastic turbulence in 1D/2D/3D geometries. <i>International Journal of Thermal Sciences</i> , 2022 , 176, 107512	4.1	1
274	A comparative study of pool boiling heat transfer in different porous artery structures. <i>Applied Thermal Engineering</i> , 2021 , 202, 117759	5.8	3
273	Dynamics of droplet impacting on a cone. <i>Physics of Fluids</i> , 2021 , 33, 112116	4.4	9
272	Impact-induced hole growth and liquid film dewetting on superhydrophobic surfaces. <i>Physics of Fluids</i> , 2021 , 33, 112113	4.4	1
271	Large-Scale Dewetting via Surfactant-Laden Droplet Impact. <i>Langmuir</i> , 2021 , 37, 13729-13736	4	1
270	Polypyrrole-Dopamine Nanofiber Light-Trapping Coating for Efficient Solar Vapor Generation. <i>ACS Applied Materials & District Solar Solar Vapor Generation</i> . <i>ACS Applied Materials & District Solar Vapor Generation</i> . <i>ACS Applied Materials & District Solar Vapor Generation</i> .	9.5	2
269	Atomistic-scale investigations of hyperthermal oxygen@raphene interactions via reactive molecular dynamics simulation: The gas effect. <i>Physics of Fluids</i> , 2021 , 33, 052107	4.4	1
268	A multiscale volume of fluid method with self-consistent boundary conditions derived from molecular dynamics. <i>Physics of Fluids</i> , 2021 , 33, 062004	4.4	4
267	Effects of skin heat conduction on aircraft icing process. <i>Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering</i> , 2021 , 235, 1306-1317	0.9	1
266	Design and implementation of an innovative airborne electric propulsion measure system of fixed-wing UAV. <i>Aerospace Science and Technology</i> , 2021 , 109, 106357	4.9	8
265	4E assessment of power generation systems for a mobile house in emergency condition using solar energy: a case study. <i>Journal of Thermal Analysis and Calorimetry</i> , 2021 , 145, 751-767	4.1	O
264	Molecular dynamics insight into viscosity reduction of hydrolysed polyacrylamide by using carbon quantum dots. <i>RSC Advances</i> , 2021 , 11, 26037-26048	3.7	1
263	Experimental investigation of a latent heat thermal energy storage unit encapsulated with molten salt/metal foam composite seeded with nanoparticles. <i>Energy and Built Environment</i> , 2021 ,	6.3	2
262	Design of Low Altitude Long Endurance Solar-Powered UAV Using Genetic Algorithm. <i>Aerospace</i> , 2021 , 8, 228	2.5	6
261	Air film evolution during droplet impact onto a solid surface. <i>Physics of Fluids</i> , 2021 , 33, 092107	4.4	1

(2020-2021)

260	Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel. <i>Renewable Energy</i> , 2021 , 179, 1179-1190	8.1	2
259	Low intensity focused ultrasound responsive microcapsules for non-ablative ultrafast intracellular release of small molecules. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 2384-2393	7.3	4
258	Numerical study of cuttings transport of nanoparticle-based drilling fluid. <i>Engineering Reports</i> , 2020 , 2, e12154	1.2	3
257	Directional Transportation of Impacting Droplets on Wettability-Controlled Surfaces. <i>Langmuir</i> , 2020 , 36, 5855-5862	4	21
256	Experimental study on operating characteristics of a dual compensation chamber loop heat pipe in periodic acceleration fields. <i>Applied Thermal Engineering</i> , 2020 , 176, 115419	5.8	4
255	Molten Salt/Metal Foam/Graphene Nanoparticle Phase Change Composites for Thermal Energy Storage. <i>ACS Applied Nano Materials</i> , 2020 , 3, 5240-5251	5.6	7
254	Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review. <i>Progress in Aerospace Sciences</i> , 2020 , 114, 100618	8.8	20
253	Departure Velocity of Rolling Droplet Jumping. <i>Langmuir</i> , 2020 , 36, 3713-3719	4	9
252	Experimental study on flow and heat transfer enhancement by elastic instability in swirling flow. <i>International Journal of Thermal Sciences</i> , 2020 , 157, 106504	4.1	6
251	Effects of rheological properties on heat transfer enhancements by elastic instability in von-Karman swirling flow. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 152, 119535	4.9	4
250	Nanoparticle modified polyacrylamide for enhanced oil recovery at harsh conditions. <i>Fuel</i> , 2020 , 268, 117186	7.1	18
249	Salinity-dependent alterations of static and dynamic contact angles in oil/brine/calcite systems: A molecular dynamics simulation study. <i>Fuel</i> , 2020 , 272, 117615	7.1	18
248	Nanodroplets impact on surfaces decorated with ridges. Physical Review Fluids, 2020, 5,	2.8	13
247	Structural design and experimental verification of a novel split aileron wing. <i>Aerospace Science and Technology</i> , 2020 , 98, 105635	4.9	5
246	Pore-scale dynamics of nanofluid-enhanced NAPL displacement in carbonate rock. <i>Journal of Contaminant Hydrology</i> , 2020 , 230, 103598	3.9	7
245	Experimental investigation on convective heat transfer of Shear-thinning fluids by elastic turbulence in a serpentine channel. <i>Experimental Thermal and Fluid Science</i> , 2020 , 112, 109997	3	9
244	Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite. <i>Energy</i> , 2020 , 192, 116593	7.9	17
243	Numerical simulation of aircraft thermal anti-icing system based on a tight-coupling method. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 148, 119061	4.9	19

242	Competition of natural convection and thermal creep in a square enclosure. <i>Physics of Fluids</i> , 2020 , 32, 102001	4.4	9
241	Effect of evaporator/condenser elevations on a loop heat pipe with non-condensable gas. <i>Applied Thermal Engineering</i> , 2020 , 180, 115711	5.8	6
240	A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets. <i>Physics of Fluids</i> , 2020 , 32, 112110	4.4	4
239	Experimental study on a dual compensation chamber loop heat pipe with dual bayonet tubes. <i>Applied Thermal Engineering</i> , 2020 , 180, 115821	5.8	5
238	CFD analysis of a nanofluid-based microchannel heat sink. <i>Thermal Science and Engineering Progress</i> , 2020 , 20, 100685	3.6	11
237	Visualization study on the heat and mass transfer in the evaporator-compensation chamber of a loop heat pipe. <i>Applied Thermal Engineering</i> , 2020 , 164, 114472	5.8	15
236	Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. <i>Applied Mathematical Modelling</i> , 2020 , 77, 1936-1953	4.5	75
235	Comparative study of two loop heat pipes using R134a as the working fluid. <i>Applied Thermal Engineering</i> , 2020 , 164, 114459	5.8	11
234	Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity. <i>Chemical Engineering Science</i> , 2020 , 211, 115252	4.4	13
233	Unsteady simulation of aircraft electro-thermal deicing process with temperature-based method. <i>Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering</i> , 2020 , 234, 388-400	0.9	4
232	Nanoparticles enabled pump-free direct absorption solar collectors. <i>Renewable Energy</i> , 2020 , 145, 2337	- 8.3 44	11
231	Nanoparticle-stabilized microemulsions for enhanced oil recovery from heterogeneous rocks. <i>Fuel</i> , 2020 , 274, 117830	7.1	17
230	Aqueous lithium bromide nanosolution for solar absorption refrigeration systems 2019,		3
229	Analysis on the Aerodynamic Characteristics of a Continuous Whole Variable Camber Airfoil. Journal of Physics: Conference Series, 2019 , 1215, 012005	0.3	3
228	Exergy and economic assessments of solar organic Rankine cycle system with linear V-Shape cavity. Energy Conversion and Management, 2019 , 199, 111997	10.6	8
227	Experimental study on an acetone-charged loop heat pipe with a nickel wick. <i>International Journal of Thermal Sciences</i> , 2019 , 146, 106104	4.1	7
226	Pore-scale simulation of water/oil displacement in a water-wet channel. <i>Frontiers of Chemical Science and Engineering</i> , 2019 , 13, 803-814	4.5	4
225	Improved rheology and high-temperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47582	2.9	28

Stability and photo-thermal conversion performance of binary nanofluids for solar absorption refrigeration systems. <i>Renewable Energy</i> , 2019 , 140, 264-273	8.1	26
Nanoparticle Formation in Stable Microemulsions for Enhanced Oil Recovery Application. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 12664-12677	3.9	3
Effects of anisotropic composite skin on electrothermal anti-icing system. <i>Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering</i> , 2019 , 233, 5403-5413	0.9	4
Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 139, 789-801	4.9	12
Fluid Itructure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. <i>International Journal of Numerical Methods for Heat and Fluid Flow</i> , 2019 , 30, 2883-2911	4.5	11
Gr-Al2O3 Nanoparticles-Based Multifunctional Drilling Fluid. <i>Industrial & Drilling Fluid. Industrial & Indus</i>	3.9	17
Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 138, 738-749	4.9	163
Nanoparticle-based solar vapor generation: An experimental and numerical study. <i>Energy</i> , 2019 , 178, 447-459	7.9	14
Conjugate local thermal non-equilibrium heat transfer in a cavity filled with a porous medium: Analysis of the element location. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 138, 941-960	4.9	26
MHD natural convection of CuAl2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. <i>Journal of Thermal Analysis and Calorimetry</i> , 2019 , 138, 1723-1743	4.1	77
Influence of silica nanoparticles on the functionality of water-based drilling fluids. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 179, 504-512	4.4	33
Carbon quantum dots with tracer-like breakthrough ability for reservoir characterization. <i>Science of the Total Environment</i> , 2019 , 669, 579-589	10.2	13
Improved rheological properties and stability of multiwalled carbon nanotubes/polymer in harsh environment. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47205	2.9	8
Structural design and verification of an innovative whole adaptive variable camber wing. <i>Aerospace Science and Technology</i> , 2019 , 89, 11-18	4.9	18
Influence of carbon quantum dots on the viscosity reduction of polyacrylamide solution. <i>Fuel</i> , 2019 , 248, 205-214	7.1	7
Rheological Characteristics of Molten Salt Seeded with Al2O3 Nanopowder and Graphene for Concentrated Solar Power. <i>Energies</i> , 2019 , 12, 467	3.1	18
Quiet power-free cooling system enabled by loop heat pipe. <i>Applied Thermal Engineering</i> , 2019 , 155, 14-23	5.8	12
Pore-Scale Displacement Efficiency during Different Salinity Water Flooding in Hydrophilic and Hydrophobic Microstructures. <i>Energy & Dels</i> , 2019, 33, 3859-3870	4.1	7
	refrigeration systems. Renewable Energy, 2019, 140, 264-273 Nanoparticle Formation in Stable Microemulsions for Enhanced Oil Recovery Application. Industrial Ramp; Engineering Chemistry Research, 2019, 58, 12664-12677 Effects of anisotropic composite skin on electrothermal anti-icing system. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 5403-5413 Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids. International Journal of Heat and Mass Transfer, 2019, 139, 789-801 FluidBructure interaction of Free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 2883-2911 Gr-Al203 Nanoparticles-Based Multifunctional Drilling Fluid. Industrial Ramp; Engineering Chemistry Research, 2019, 58, 10084-10091 Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity. International Journal of Heat and Mass Transfer, 2019, 138, 738-749 Nanoparticle-based solar vapor generation: An experimental and numerical study. Energy, 2019, 178, 447-459 Conjugate local thermal non-equilibrium heat transfer in a cavity filled with a porous medium: Analysis of the element location. International Journal of Heat and Mass Transfer, 2019, 138, 941-960 MHD natural convection of CuBIZO3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1723-1743 Influence of silica nanoparticles on the functionality of water-based drilling fluids. Journal of Petroleum Science and Engineering, 2019, 179, 504-512 Carbon quantum dots with tracer-like breakthrough ability for reservoir characterization. Science of the Total Environment, 2019, 669, 579-589 Improved rheological properties and stability of multiwalled carbon nanotubes/polymer in harsh environment.	Nanoparticle Formation in Stable Microemulsions for Enhanced Oil Recovery Application. Industrial 8amp; Engineering Chemistry Research, 2019, 58, 12664-12677 Effects of anisotropic composite skin on electrothermal anti-icing system. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 5403-5413 Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids. International Journal of Heat and Mass Transfer, 2019, 139, 789-801 Fluidstructure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 2883-2911 Gr-AIZO3 Nanoparticles-Based Multifunctional Drilling Fluid. Industrial 8amp; Engineering Chemistry Research, 2019, 58, 10084-10091 Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity. International Journal of Heat and Mass Transfer, 2019, 138, 738-749 Nanoparticle-based solar vapor generation: An experimental and numerical study. Energy, 2019, 178, 447-459 Nanoparticle-based solar vapor generation: An experimental and numerical study. Energy, 2019, 179, 447-459 MHD natural convection of Cuili203 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. Journal of Heat and Mass Transfer, 2019, 138, 941-960 HID natural convection of Cuili203 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1723-1743 Influence of silica nanoparticles on the functionality of water-based drilling fluids. Journal of Petroleum Science and Engineering, 2019, 179, 504-512 Carbon quantum dots with tracer-like breakthrough ability for reservoir characterization. Science of the Total Environment, 2019, 669, 579-589 Improved rheological properties and stability of multiwa

206	Solar photothermal conversion characteristics of hybrid nanofluids: An experimental and numerical study. <i>Renewable Energy</i> , 2019 , 141, 937-949	8.1	27
205	Droplet re-icing characteristics on a superhydrophobic surface. <i>Applied Physics Letters</i> , 2019 , 115, 0737	703.4	18
204	Nanoparticle Assisted EOR during Sand-Pack Flooding: Electrical Tomography to Assess Flow Dynamics and Oil Recovery. <i>Sensors</i> , 2019 , 19,	3.8	1
203	Molecular structure characterization of asphaltene in the presence of inhibitors with nanoemulsions <i>RSC Advances</i> , 2019 , 9, 19560-19570	3.7	16
202	Kinetic Study of Controlled Asphaltene Inhibitor Release from Nanoemulsions. <i>Langmuir</i> , 2019 , 35, 10	79 <u>5</u> -108	30 <i>3</i> 7
201	Stabilization of Polymer Nanocomposites in High-Temperature and High-Salinity Brines. <i>ACS Omega</i> , 2019 , 4, 11631-11641	3.9	11
200	Particle-based hybrid and multiscale methods for nonequilibrium gas flows. <i>Advances in Aerodynamics</i> , 2019 , 1,	2.2	22
199	2019,		1
198	Bubble formation in freezing droplets. Physical Review Fluids, 2019, 4,	2.8	15
197	Free convection heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a porous complex shaped cavity with MHD and thermal radiation effects. <i>International Journal of Numerical Methods for Heat and Fluid Flow</i> , 2019 , 29, 4349-4376	4.5	34
196	Effects of salinity on the onset of elastic turbulence in swirling flow and curvilinear microchannels. <i>Physics of Fluids</i> , 2019 , 31, 123106	4.4	5
195	Experimental study on pool boiling in a porous artery structure. <i>Applied Thermal Engineering</i> , 2019 , 149, 377-384	5.8	18
194	Improved Polymer Flooding in Harsh Environments by Free-Radical Polymerization and the Use of Nanomaterials. <i>Energy & Dolymerization and Energy & Dolymerization and Energy & Dolymerization and Energy & Dolymerization and Environments by Free-Radical Polymerization and the Use of Nanomaterials. Energy & Dolymerization and Environments by Free-Radical Polymerization and the Use of Nanomaterials.</i>	4.1	18
193	Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 192, 94-102	6.4	49
192	Thermal energy storage of molten salt Based nanofluid containing nano-encapsulated metal alloy phase change materials. <i>Energy</i> , 2019 , 167, 912-920	7.9	49
191	Quantification of wettability characteristics for carbonates using different salinities. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 173, 501-511	4.4	7
190	Molecular dynamics investigation of substrate wettability alteration and oil transport in a calcite nanopore. <i>Fuel</i> , 2019 , 239, 1149-1161	7.1	27
189	Effect of evaporator tilt on a loop heat pipe with non-condensable gas. <i>International Journal of</i> Heat and Mass Transfer 2019, 128, 1072-1080	4.9	19

(2018-2018)

188	Controlled delivery and release of surfactant for enhanced oil recovery by nanodroplets. <i>Fuel</i> , 2018 , 218, 396-405	7.1	27
187	Experimental photothermal performance of nanofluids under concentrated solar flux. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 182, 255-262	6.4	37
186	Latent and sensible energy storage enhancement of nano-nitrate molten salt. <i>Solar Energy</i> , 2018 , 172, 191-197	6.8	18
185	Synthesis of stable nanoparticles at harsh environment using the synergistic effect of surfactants blend. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 64, 390-401	6.3	9
184	Design and development of a direct injection system for cryogenic engines. <i>Cryogenics</i> , 2018 , 91, 77-86	1.8	O
183	Solar evaporation via nanofluids: A comparative study. <i>Renewable Energy</i> , 2018 , 122, 443-454	8.1	50
182	Nanoparticle-enabled delivery of surfactants in porous media. <i>Journal of Colloid and Interface Science</i> , 2018 , 519, 44-57	9.3	35
181	Thermal-physical properties of nanoparticle-seeded nitrate molten salts. <i>Renewable Energy</i> , 2018 , 120, 275-288	8.1	59
180	A comparative study of direct absorption nanofluids for solar thermal applications. <i>Solar Energy</i> , 2018 , 161, 74-82	6.8	56
179	Examination of drill pipe corrosion in water-based drilling fluids under wellbore conditions. <i>Corrosion Engineering Science and Technology</i> , 2018 , 53, 183-187	1.7	5
178	Protective composite silica/polyelectrolyte shell with enhanced tolerance to harsh acid and alkali conditions. <i>Journal of Colloid and Interface Science</i> , 2018 , 512, 198-207	9.3	2
177	A Numerical Study of Fluid Flow and Heat Transfer in Carbon Dioxide Enclosures on Mars. <i>Energies</i> , 2018 , 11, 756	3.1	1
176	Theoretical investigation of natural convection heat transfer in inclined and fully divided CO2 enclosures on Mars. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 126, 1113-1122	4.9	4
175	Controlled releases of asphaltene inhibitors by nanoemulsions. <i>Fuel</i> , 2018 , 234, 538-548	7.1	20
174	Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol. <i>Materials Science in Semiconductor Processing</i> , 2018 , 83, 175-185	4.3	41
173	A critical assessment of the line tension determined by the modified Young equation. <i>Physics of Fluids</i> , 2018 , 30, 082003	4.4	21
172	Experimental investigation on transient characteristics of a dual compensation chamber loop heat pipe subjected to acceleration forces. <i>Applied Thermal Engineering</i> , 2018 , 130, 169-184	5.8	13
171	Solar collectors and photovoltaics as combined heat and power systems: A critical review. <i>Energy Conversion and Management</i> , 2018 , 156, 688-705	10.6	87

170	Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. <i>Applied Thermal Engineering</i> , 2018 , 130, 1004-1011	5.8	48
169	Investigation on thermo-physical properties of molten salt enhanced with nanoparticle and copper foam 2018 ,		4
168	Atomistic Molecular Dynamic Simulation of Dilute Poly(acrylic acid) Solution: Effects of Simulation Size Sensitivity and Ionic Strength. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 17129-17	144	15
167	Frost Self-Removal Mechanism during Defrosting on Vertical Superhydrophobic Surfaces: Peeling Off or Jumping Off. <i>Langmuir</i> , 2018 , 34, 14562-14569	4	28
166	Molecular Dynamics Simulation of the Salinity Effect on the n-Decane/Water/Vapor Interfacial Equilibrium. <i>Energy & Company Fuels</i> , 2018 , 32, 11080-11092	4.1	21
165	Novel draw solution for forward osmosis based solar desalination. <i>Applied Energy</i> , 2018 , 230, 220-231	10.7	25
164	Experimental study of photothermal conversion using gold/water and MWCNT/water nanofluids. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 188, 51-65	6.4	31
163	Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack. <i>Energy</i> , 2018 , 156, 154-168	7.9	52
162	Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage. <i>Applied Energy</i> , 2017 , 189, 697-710	10.7	32
161	Experimental study of curvature effects on jet impingement heat transfer on concave surfaces. <i>Chinese Journal of Aeronautics</i> , 2017 , 30, 586-594	3.7	28
160	Synthesis of stable iron oxide nanoparticle dispersions in high ionic media. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 50, 57-71	6.3	27
159	Energy analysis and shadow modeling of a rectangular type salt gradient solar pond. <i>Solar Energy</i> , 2017 , 146, 161-171	6.8	24
158	Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. <i>Nano Energy</i> , 2017 , 36, 134-155	17.1	260
157	Lattice Boltzmann simulation of flow past a non-spherical particle. <i>Advanced Powder Technology</i> , 2017 , 28, 1486-1494	4.6	19
156	Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. <i>Energy Conversion and Management</i> , 2017 , 142, 366-373	10.6	86
155	Cu-Sn-Pb Alloy Fabricated by Powder Metallurgy and Its Application for Standard Curve Establishment of Portable X-Ray Fluorescence Instrument for Alloy Analysis on Bronze Relics. <i>MRS Advances</i> , 2017 , 2, 2095-2100	0.7	O
154	Rheological Properties of Partially Hydrolyzed Polyacrylamide Seeded by Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 3456-3463	3.9	113
153	Evaluation of clustering role versus Brownian motion effect on the heat conduction in nanofluids: A novel approach. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 108, 822-829	4.9	20

(2016-2017)

152	Photothermal conversion characteristics of gold nanoparticles under different filter conditions. <i>Energy</i> , 2017 , 141, 32-39	7.9	5
151	Effect of Low Salinity on the Oil Desorption Efficiency from Calcite and Silica Surfaces. <i>Energy & Energy Fuels</i> , 2017 , 31, 11892-11901	4.1	27
150	Transport and Deposition of Carbon Nanoparticles in Saturated Porous Media. <i>Energies</i> , 2017 , 10, 1151	3.1	23
149	Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery. <i>RSC Advances</i> , 2017 , 7, 41391-41398	3.7	25
148	Microemulsions stabilized by in-situ synthesized nanoparticles for enhanced oil recovery. <i>Fuel</i> , 2017 , 210, 272-281	7.1	43
147	Volumetric solar heating and steam generation via gold nanofluids. <i>Applied Energy</i> , 2017 , 206, 393-400	10.7	97
146	Formulation optimization of reverse microemulsions using design of experiments for nanoparticles synthesis. <i>Chemical Engineering Research and Design</i> , 2017 , 125, 367-384	5.5	16
145	Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets. Journal of Colloid and Interface Science, 2017, 506, 83-92	9.3	14
144	An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. <i>Solar Energy</i> , 2017 , 155, 1033-1043	6.8	121
143	Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials. <i>Energy Conversion and Management</i> , 2017 , 154, 562-575	10.6	68
142	DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds. <i>Chemical Engineering Science</i> , 2017 , 172, 79-99	4.4	35
141	A review on solar chimney systems. Renewable and Sustainable Energy Reviews, 2017, 67, 954-987	16.2	83
140	Effect of non-condensable gas on the startup of a loop heat pipe. <i>Applied Thermal Engineering</i> , 2017 , 111, 1507-1516	5.8	22
139	Thermal energy storage enhancement of a binary molten salt via in-situ produced nanoparticles. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 104, 658-664	4.9	58
138	A novel inhibitor for controlling Iraqi asphaltene problems 2017,		3
137	In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications. <i>Materials</i> , 2017 , 10,	3.5	25
136	Measurement of Similarity in Academic Contexts. <i>Publications</i> , 2017 , 5, 18	1.7	2
135	Experimental investigation of the performance of a single-stage auto-cascade refrigerator. <i>Heat and Mass Transfer</i> , 2016 , 52, 11-20	2.2	14

134	Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. <i>Materials Science and Engineering C</i> , 2016 , 69, 1361-6	8.3	68
133	Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. <i>Applied Energy</i> , 2016 , 181, 65-74	10.7	149
132	Jet impingement heat transfer on a concave surface in a wing leading edge: Experimental study and correlation development. <i>Experimental Thermal and Fluid Science</i> , 2016 , 78, 199-207	3	16
131	Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers. <i>Carbon</i> , 2016 , 105, 248-259	10.4	44
130	Three-dimensional full loop simulation of solids circulation in an interconnected fluidized bed. <i>Powder Technology</i> , 2016 , 289, 118-125	5.2	25
129	Nanoparticle-Assisted Water-Flooding in Berea Sandstones. <i>Energy & amp; Fuels</i> , 2016 , 30, 2791-2804	4.1	62
128	Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules. <i>Nanoscale</i> , 2016 , 8, 5170-80	7.7	55
127	Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design. <i>Energy Conversion and Management</i> , 2016 , 118, 353-363	10.6	18
126	Stability and Aggregation Kinetics of Titania Nanomaterials under Environmentally Realistic Conditions. <i>Environmental Science & Environmental Science</i>	10.3	28
125	Evaporation/boiling heat transfer characteristics in an artery porous structure. <i>Applied Thermal Engineering</i> , 2016 , 104, 587-595	5.8	18
124	Photothermal conversion efficiency of nanofluids: An experimental and numerical study. <i>Solar Energy</i> , 2016 , 139, 278-289	6.8	88
123	Steam generation in a nanoparticle-based solar receiver. <i>Nano Energy</i> , 2016 , 28, 397-406	17.1	189
122	CFD investigation of gas-solids flow in a new fluidized catalyst cooler. <i>Powder Technology</i> , 2016 , 304, 108-119	5.2	2
121	Exothermic characteristics of aluminum based nanomaterials. <i>Powder Technology</i> , 2015 , 282, 19-24	5.2	15
120	Experimental study of thermal oxidation of nanoscale alloys of aluminium and zinc (nAlZn). <i>Journal of Physics and Chemistry of Solids</i> , 2015 , 85, 188-196	3.9	3
119	Development of cryogenic loop heat pipes: A review and comparative analysis. <i>Applied Thermal Engineering</i> , 2015 , 89, 180-191	5.8	30
118	Experimental study of jet impingement heat transfer on a variable-curvature concave surface in a wing leading edge. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 90, 92-101	4.9	23
117	Steady-state modeling and analysis of a loop heat pipe under gravity-assisted operation. <i>Applied Thermal Engineering</i> , 2015 , 83, 88-97	5.8	14

116	Dependence of Photothermal Conversion Characteristics on Different Nanoparticle Dispersions. Journal of Nanoscience and Nanotechnology, 2015 , 15, 3055-60	1.3	22
115	Modification of the Young-Laplace equation and prediction of bubble interface in the presence of nanoparticles. <i>Advances in Colloid and Interface Science</i> , 2015 , 225, 1-15	14.3	13
114	Novel design of central dual-receiver for solar power tower. <i>Applied Thermal Engineering</i> , 2015 , 91, 107	′1 518081	l 14
113	Production and characterization of Al-Cu and Al-Ni nanoparticles. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1758, 44		3
112	Thermal-Chemical Characteristics of Allu Alloy Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2015 , 150616125001008	3.8	19
111	Composite silica nanoparticle/polyelectrolyte microcapsules with reduced permeability and enhanced ultrasound sensitivity. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1888-1897	7.3	48
110	Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development. <i>Applied Physics Reviews</i> , 2015 , 2, 011103	17.3	33
109	Effect of pilot fuel quantity and type on performance and emissions of natural gas and hydrogen based combustion in a compression ignition engine. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 5163-5175	6.7	31
108	Photothermal conversion characteristics of gold nanoparticle dispersions. Solar Energy, 2014, 100, 141	-1 <u>4</u> .8	152
107	Molecular Dynamics Simulation of Heat Transfer from a Gold Nanoparticle to a Water Pool. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1285-1293	3.8	51
106	Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. <i>Energy Conversion and Management</i> , 2014 , 84, 261-267	10.6	140
105	Numerical Simulation of Individual Metallic Nanoparticles 2014 , 25-66		
104	Theoretical analysis of steady-state performance of a loop heat pipe with a novel evaporator. <i>Applied Thermal Engineering</i> , 2014 , 64, 233-241	5.8	19
103	Critical heat flux of nanofluids inside a single microchannel: Experiments and correlations. <i>Chemical Engineering Research and Design</i> , 2014 , 92, 2339-2351	5.5	18
102	Assessment of elliptic flame front propagation characteristics of iso-octane, gasoline, M85 and E85 in an optical engine. <i>Combustion and Flame</i> , 2014 , 161, 696-710	5.3	28
101	Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels. <i>Applied Energy</i> , 2014 , 124, 354-365	10.7	77
100	Effect of evaporator tilt on the operating temperature of a loop heat pipe without a secondary wick. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 77, 600-603	4.9	13
99	Investigation of nanofluid bubble characteristics under non-equilibrium conditions. <i>Chemical Engineering and Processing: Process Intensification</i> , 2014 , 86, 116-124	3.7	11

98	Electromagnetic heating effect of aggregated gold nanoparticle colloids. <i>Journal of Applied Physics</i> , 2014 , 115, 094903	2.5	10
97	A reactive molecular dynamic simulation of oxidation of a silicon nanocluster. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	6
96	Experimental study of electromagnetic heating of gold nanoparticle dispersions at 200 kHz. <i>Nanomedicine</i> , 2013 , 8, 215-22	5.6	4
95	Effect of component layout on the operation of a miniature cryogenic loop heat pipe. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 60, 61-68	4.9	14
94	Characterization of the InGaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system. <i>Energy Conversion and Management</i> , 2013 , 76, 177-184	10.6	29
93	Nanoparticle-Related Heat Transfer Phenomenon and Its Application in Biomedical Fields. <i>Heat Transfer Engineering</i> , 2013 , 34, 1171-1179	1.7	22
92	Conductivity and frequency dependent specific absorption rate. <i>Journal of Applied Physics</i> , 2013 , 113, 074902	2.5	16
91	Performance Assessment of a Closed-Loop Minichannel Heat Sink Using Water and FC-72 as Coolants. <i>Heat Transfer Engineering</i> , 2013 , 34, 500-510	1.7	3
90	Oxidation and ignition of aluminum nanomaterials. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2017	6- 8.8	33
89	Dielectric Property Measurement of Gold Nanoparticle Dispersions in the Millimeter Wave Range. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34, 140-151	2.2	4
88	Performance and specific emissions contours of a diesel and RME fueled compression-ignition engine throughout its operating speed and power range. <i>Applied Energy</i> , 2013 , 111, 771-777	10.7	20
87	Assessment of elliptic flame front propagation characteristics of hydrogen in an optically accessible spark ignition engine. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 15452-15468	6.7	9
86	Determination of charged pressure of working fluid and its effect on the operation of a miniature CLHP. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 63, 454-462	4.9	14
85	Author's reply to the comments on Experimental study of flow boiling of FC-72 in parallel minichannels under sub-atmospheric pressure [Applied Thermal Engineering, 2013, 57, 48-49]	5.8	
84	Flow Boiling Heat Transfer in Micro-Channel Heat Sinks under Sub-Atmospheric Pressures. Experimental Heat Transfer, 2013 , 26, 85-113	2.4	2
83	Comparative analysis of CFD models for jetting fluidized beds: The effect of inter-phase drag force. <i>Powder Technology</i> , 2012 , 221, 114-122	5.2	17
82	Convective heat transfer of aqueous alumina nanosuspensions in a horizontal mini-channel. <i>Heat and Mass Transfer</i> , 2012 , 48, 349-357	2.2	21
81	Experimental study of a nitrogen-charged cryogenic loop heat pipe. <i>Cryogenics</i> , 2012 , 52, 557-563	1.8	20

(2011-2012)

80	Operating characteristics of a miniature cryogenic loop heat pipe. <i>International Journal of Heat and Mass Transfer</i> , 2012 , 55, 8093-8099	4.9	22
79	UV-cross-linkable multilayer microcapsules made of weak polyelectrolytes. <i>Langmuir</i> , 2012 , 28, 10822-	9 4	31
78	Hydrodynamics of a fluidized bed co-combustor for tobacco waste and coal. <i>Bioresource Technology</i> , 2012 , 119, 339-48	11	12
77	Discrete particle modeling of granular temperature distribution in a bubbling fluidized bed. <i>Particuology</i> , 2012 , 10, 428-437	2.8	43
76	Comparative analysis of CFD models for jetting fluidized beds: Effect of particle-phase viscosity. <i>Particuology</i> , 2012 , 10, 444-449	2.8	4
75	Low frequency heating of gold nanoparticle dispersions for non-invasive thermal therapies. <i>Nanoscale</i> , 2012 , 4, 3945-53	7.7	46
74	Influence of nanoparticles on boiling heat transfer. Applied Thermal Engineering, 2012, 41, 2-9	5.8	46
73	High-power calibration and measurement method for bio-electromagnetic study. <i>IET Science, Measurement and Technology</i> , 2012 , 6, 420	1.5	
72	Nanofluid surface wettability through asymptotic contact angle. <i>Langmuir</i> , 2011 , 27, 2211-8	4	55
71	Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes. <i>Journal of Environmental Sciences</i> , 2011 , 23, 1066-71	6.4	59
70	Experimental study of flow boiling of FC-72 in parallel minichannels under sub-atmospheric pressure. <i>Applied Thermal Engineering</i> , 2011 , 31, 3839-3853	5.8	20
69	Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 1063-1073	2.3	47
68	Ultrasonic-aided fabrication of gold nanofluids. Nanoscale Research Letters, 2011, 6, 198	5	52
67	Thermal oxidation of iron nanoparticles and its implication for chemical-looping combustion. <i>Journal of Chemical Technology and Biotechnology</i> , 2011 , 86, 375-380	3.5	20
66	Boiling heat transfer of nanofluids: The effect of heating surface modification. <i>International Journal of Thermal Sciences</i> , 2011 , 50, 480-485	4.1	58
65	Dynamic characteristics of binary mixtures in a two-jet fluidized bed. <i>Chemical Engineering Science</i> , 2011 , 66, 1702-1714	4.4	11
64	Bubble growth rate from stainless steel substrate and needle nozzles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 384, 240-247	5.1	26
63	Spreading of triple line and dynamics of bubble growth inside nanoparticle dispersions on top of a substrate plate. <i>Journal of Colloid and Interface Science</i> , 2011 , 362, 285-91	9.3	20

62	Modeling and Analysis of Supercritical Startup of a Cryogenic Loop Heat Pipe. <i>Journal of Heat Transfer</i> , 2011 , 133,	1.8	10
61	Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel. <i>Journal of Heat Transfer</i> , 2010 , 132,	1.8	53
60	Molecular Dynamics Simulation of a CoreBhell Structured Metallic Nanoparticle. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8688-8696	3.8	37
59	Convective Heat Transfer of Alumina Nanofluids in a Microchannel 2010 ,		5
58	Nanofuel as a potential secondary energy carrier. Energy and Environmental Science, 2010, 3, 591	35.4	77
57	Effect of gold nanoparticles on the dynamics of gas bubbles. <i>Langmuir</i> , 2010 , 26, 6902-7	4	24
56	Surface melting and sintering of metallic nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 8010-7	1.3	4
55	Parametric analysis of steady-state operation of a CLHP. <i>Applied Thermal Engineering</i> , 2010 , 30, 850-858	8 5.8	14
54	CFD simulation of a gasBolid fluidized bed with two vertical jets. <i>Particuology</i> , 2010 , 8, 425-432	2.8	12
53	The effect of gold nanoparticles on the spreading of triple line. <i>Microfluidics and Nanofluidics</i> , 2010 , 8, 843-848	2.8	19
52	CFD simulation of jet behaviors in a binary gas-solid fluidized bed: comparisons with experiments. <i>Frontiers of Chemical Engineering in China</i> , 2010 , 4, 242-249		2
51	Molecular dynamics simulation of the sintering of metallic nanoparticles. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 823-829	2.3	88
50	Modeling and analysis of startup of a loop heat pipe. <i>Applied Thermal Engineering</i> , 2010 , 30, 2778-2787	5.8	26
49	Bubble formation on a submerged micronozzle. <i>Journal of Colloid and Interface Science</i> , 2010 , 343, 291-	79.3	51
48	Experimental investigation of a dual compensation chamber loop heat pipe. <i>International Journal of Heat and Mass Transfer</i> , 2010 , 53, 3231-3240	4.9	31
47	Experimental study of jet structure and pressurisation upon liquid nitrogen injection into water. <i>International Journal of Multiphase Flow</i> , 2010 , 36, 940-949	3.6	20
46	Bubble formation in a quiescent pool of gold nanoparticle suspension. <i>Advances in Colloid and Interface Science</i> , 2010 , 159, 72-93	14.3	33
45	Theoretical and experimental investigation of quasi-steady-state bubble growth on top of submerged stainless steel nozzles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 369, 11-19	5.1	23

44	Surface Wettability Through Asymptotic Contact Angle 2009 ,		1
43	Supercritical fluids technology for clean biofuel production. <i>Progress in Natural Science: Materials International</i> , 2009 , 19, 273-284	3.6	117
42	Mathematical modeling of steady-state operation of a loop heat pipe. <i>Applied Thermal Engineering</i> , 2009 , 29, 2643-2654	5.8	66
41	CFD simulation of bubbling and collapsing characteristics in a gas-solid fluidized bed. <i>Petroleum Science</i> , 2009 , 6, 69-75	4.4	9
40	Flow and migration of nanoparticle in a single channel. <i>Heat and Mass Transfer</i> , 2009 , 45, 1061-1067	2.2	67
39	Review of nanofluids for heat transfer applications. <i>Particuology</i> , 2009 , 7, 141-150	2.8	576
38	Experimental investigation of startup behaviors of a dual compensation chamber loop heat pipe with insufficient fluid inventory. <i>Applied Thermal Engineering</i> , 2009 , 29, 1447-1456	5.8	40
37	A benchmark study on the thermal conductivity of nanofluids. <i>Journal of Applied Physics</i> , 2009 , 106, 094	3 <u>2</u> 1₹	766
36	Experimental Investigation of the Oxidation of Tin Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13470-13476	3.8	33
35	Intracellular hyperthermia: Nanobubbles and their biomedical applications. <i>International Journal of Hyperthermia</i> , 2009 , 25, 533-41	3.7	37
34	Subcooled Flow Boiling Heat Transfer of Nanofluids in a Microchannel 2009,		1
33	Oxidation investigation of nickel nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 5057-65	3.6	96
32	Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). <i>International Journal of Heat and Mass Transfer</i> , 2008 , 51, 4958-4965	4.9	79
31	Phase change heat transfer of liquid nitrogen upon injection into aqueous based TiO2 nanofluids. Journal of Nanoparticle Research, 2008 , 10, 987-996	2.3	4
30	On the role of structural disjoining pressure to boiling heat transfer of thermal nanofluids. <i>Journal of Nanoparticle Research</i> , 2008 , 10, 1129-1140	2.3	21
29	Heat transfer of gasBolid two-phase mixtures flowing through a packed bed under constant wall heat flux conditions. <i>Chemical Engineering Journal</i> , 2007 , 130, 1-10	14.7	23
28	Heat transfer of gasBolid two-phase mixtures flowing through a packed bed. <i>Chemical Engineering Science</i> , 2007 , 62, 4241-4249	4.4	17
27	Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). <i>International Journal of Heat and Mass Transfer</i> , 2006 , 49, 240-250	4.9	1071

26	Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids). <i>IEEE Nanotechnology Magazine</i> , 2006 , 5, 220-227	2.6	172
25	Liquid nitrogen injection into water: Pressure build-up and heat transfer. <i>Cryogenics</i> , 2006 , 46, 740-748	1.8	34
24	Solids behaviour in a dilute gasBolid two-phase mixture flowing through monolith channels. <i>Chemical Engineering Science</i> , 2006 , 61, 1561-1570	4.4	8
23	Modelling of the behaviour of gasBolid two-phase mixtures flowing through packed beds. <i>Chemical Engineering Science</i> , 2006 , 61, 1922-1931	4.4	29
22	Heat transfer of gas flow through a packed bed. <i>Chemical Engineering Science</i> , 2006 , 61, 3532-3542	4.4	110
21	Confined growth of a vapour bubble in a capillary tube at initially uniform superheat: Experiments and modelling. <i>International Journal of Heat and Mass Transfer</i> , 2006 , 49, 4653-4671	4.9	46
20	Pool Boiling Heat Transfer of Aqueous TiO2-Based Nanofluids. <i>Journal of Enhanced Heat Transfer</i> , 2006 , 13, 231-244	1.7	47
19	A numerical study on the gas fluidisation of secondary agglomerates of nanoparticles. <i>Progress in Natural Science: Materials International</i> , 2005 , 15, 111-116	3.6	5
18	Particle migration in a flow of nanoparticle suspensions. <i>Powder Technology</i> , 2005 , 149, 84-92	5.2	200
17	Hydrodynamics of gasBolid two-phase mixtures flowing upward through packed beds. <i>Powder Technology</i> , 2005 , 153, 13-22	5.2	10
16	Vertical upward flow of gasBolid two-phase mixtures through monolith channels. <i>Powder Technology</i> , 2005 , 153, 51-58	5.2	7
15	Solids behaviour in a gasBolid two-phase mixture flowing through a packed particle bed. <i>Chemical Engineering Science</i> , 2005 , 60, 5231-5239	4.4	40
14	Theoretical analyses on boiling critical heat flux with porous media. <i>Heat and Mass Transfer</i> , 2005 , 41, 780-784	2.2	7
13	Formulation of nanofluids for natural convective heat transfer applications. <i>International Journal of Heat and Fluid Flow</i> , 2005 , 26, 855-864	2.4	334
12	Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels. <i>Microfluidics and Nanofluidics</i> , 2005 , 1, 183-189	2.8	121
11	Experimental investigation into the pool boiling heat transfer of aqueous based 🗟 lumina nanofluids. <i>Journal of Nanoparticle Research</i> , 2005 , 7, 265-274	2.3	379
10	Effect on Heat Transfer of Particle Migration in Suspensions of Nanoparticles Flowing Through Minichannels 2004 , 939		6
9	Two-phase pressure drop of water during flow boiling in a vertical narrow channel. <i>Experimental Thermal and Fluid Science</i> , 2004 , 28, 131-138	3	20

LIST OF PUBLICATIONS

8	Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. <i>International Journal of Heat and Mass Transfer</i> , 2004 , 47, 5181-5188	4.9	1197
7	Saturated flow boiling of water in a narrow channel: time-averaged heat transfer coefficients and correlations. <i>Applied Thermal Engineering</i> , 2004 , 24, 1207-1223	5.8	40
6	Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids). <i>Journal of Thermophysics and Heat Transfer</i> , 2004 , 18, 481-485	1.3	368
5	Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. <i>International Journal of Heat and Mass Transfer</i> , 2002 , 45, 1739-1747	4.9	109
4	Examination of the MassHeat Transfer Analogy for Two-Phase Flows in Narrow Channels. <i>Chemical Engineering Research and Design</i> , 2002 , 80, 729-738	5.5	6
3	Flow boiling of water in a narrow vertical channel at low mass flux: observations of local phenomena 2002 ,		8
2	Startup characteristics of an ammonia loop heat pipe with a rectangular evaporator. <i>Heat and Mass Transfer</i> ,1	2.2	О
1	Liquid Film Sculpture via Droplet Impacting on Microstructured Heterowettable Surfaces. <i>Advanced Functional Materials</i> ,2203222	15.6	3