Dongsheng Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8852964/publications.pdf

Version: 2024-02-01

291 papers 16,297 citations

24978 57 h-index 20307 116 g-index

304 all docs

304 docs citations

times ranked

304

10898 citing authors

#	Article	IF	CITATIONS
1	Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 2004, 47, 5181-5188.	2.5	1,412
2	Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 2006, 49, 240-250.	2.5	1,233
3	A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 2009, 106, .	1.1	897
4	Review of nanofluids for heat transfer applications. Particuology, 2009, 7, 141-150.	2.0	669
5	Experimental investigation into the pool boiling heat transfer of aqueous based Î ³ -alumina nanofluids. Journal of Nanoparticle Research, 2005, 7, 265-274.	0.8	438
6	Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube) Tj ETQq0 0 0	rgBT_JOve	rlock 10 Tf 50
7	Formulation of nanofluids for natural convective heat transfer applications. International Journal of Heat and Fluid Flow, 2005, 26, 855-864.	1.1	382
8	Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy, 2017, 36, 134-155.	8.2	326
9	Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity. International Journal of Heat and Mass Transfer, 2019, 138, 738-749.	2.5	270
10	Steam generation in a nanoparticle-based solar receiver. Nano Energy, 2016, 28, 397-406.	8.2	240
11	Particle migration in a flow of nanoparticle suspensions. Powder Technology, 2005, 149, 84-92.	2.1	232
12	Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Applied Energy, 2016, 181, 65-74.	5.1	197
13	Photothermal conversion characteristics of gold nanoparticle dispersions. Solar Energy, 2014, 100, 141-147.	2.9	195
14	Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids). IEEE Nanotechnology Magazine, 2006, 5, 220-227.	1.1	192
15	Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Conversion and Management, 2014, 84, 261-267.	4.4	174
16	An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Solar Energy, 2017, 155, 1033-1043.	2.9	174
17	Rheological Properties of Partially Hydrolyzed Polyacrylamide Seeded by Nanoparticles. Industrial & Samp; Engineering Chemistry Research, 2017, 56, 3456-3463.	1.8	148
18	Supercritical fluids technology for clean biofuel production. Progress in Natural Science: Materials International, 2009, 19, 273-284.	1.8	140

#	Article	IF	Citations
19	Heat transfer of gas flow through a packed bed. Chemical Engineering Science, 2006, 61, 3532-3542.	1.9	138
20	Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Applied Mathematical Modelling, 2020, 77, 1936-1953.	2.2	138
21	Volumetric solar heating and steam generation via gold nanofluids. Applied Energy, 2017, 206, 393-400.	5.1	136
22	Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels. Microfluidics and Nanofluidics, 2005, 1, 183-189.	1.0	133
23	A review on solar chimney systems. Renewable and Sustainable Energy Reviews, 2017, 67, 954-987.	8.2	130
24	Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. International Journal of Heat and Mass Transfer, 2002, 45, 1739-1747.	2.5	128
25	MHD natural convection of Cu–Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1723-1743.	2.0	123
26	Solar collectors and photovoltaics as combined heat and power systems: A critical review. Energy Conversion and Management, 2018, 156, 688-705.	4.4	120
27	Effect of Al 2 O 3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. Energy Conversion and Management, 2017, 142, 366-373.	4.4	119
28	Molecular dynamics simulation of the sintering of metallic nanoparticles. Journal of Nanoparticle Research, 2010, 12, 823-829.	0.8	118
29	Photothermal conversion efficiency of nanofluids: An experimental and numerical study. Solar Energy, 2016, 139, 278-289.	2.9	111
30	Oxidation investigation of nickel nanoparticles. Physical Chemistry Chemical Physics, 2008, 10, 5057.	1.3	110
31	Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. Materials Science and Engineering C, 2016, 69, 1361-1366.	3.8	107
32	Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials. Energy Conversion and Management, 2017, 154, 562-575.	4.4	103
33	Thermal-physical properties of nanoparticle-seeded nitrate molten salts. Renewable Energy, 2018, 120, 275-288.	4.3	96
34	Nanofuel as a potential secondary energy carrier. Energy and Environmental Science, 2010, 3, 591.	15.6	92
35	Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels. Applied Energy, 2014, 124, 354-365.	5.1	91
36	Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack. Energy, 2018, 156, 154-168.	4.5	87

#	Article	IF	CITATIONS
37	Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). International Journal of Heat and Mass Transfer, 2008, 51, 4958-4965.	2.5	86
38	Mathematical modeling of steady-state operation of a loop heat pipe. Applied Thermal Engineering, 2009, 29, 2643-2654.	3.0	86
39	Nanoparticle-Assisted Water-Flooding in Berea Sandstones. Energy & 2016, 30, 2791-2804.	2.5	86
40	A comparative study of direct absorption nanofluids for solar thermal applications. Solar Energy, 2018, 161, 74-82.	2.9	82
41	Thermal energy storage of molten salt –based nanofluid containing nano-encapsulated metal alloy phase change materials. Energy, 2019, 167, 912-920.	4.5	82
42	Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes. Journal of Environmental Sciences, 2011, 23, 1066-1071.	3.2	78
43	Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Applied Thermal Engineering, 2018, 130, 1004-1011.	3.0	78
44	Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage. Solar Energy Materials and Solar Cells, 2019, 192, 94-102.	3.0	78
45	Thermal energy storage enhancement of a binary molten salt via in-situ produced nanoparticles. International Journal of Heat and Mass Transfer, 2017, 104, 658-664.	2.5	76
46	Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol. Materials Science in Semiconductor Processing, 2018, 83, 175-185.	1.9	73
47	Flow and migration of nanoparticle in a single channel. Heat and Mass Transfer, 2009, 45, 1061-1067.	1.2	71
48	Solar evaporation via nanofluids: A comparative study. Renewable Energy, 2018, 122, 443-454.	4.3	69
49	Free convection heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a porous complex shaped cavity with MHD and thermal radiation effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4349-4376.	1.6	66
50	Boiling heat transfer of nanofluids: The effect of heating surface modification. International Journal of Thermal Sciences, 2011, 50, 480-485.	2.6	65
51	Molecular Dynamics Simulation of Heat Transfer from a Gold Nanoparticle to a Water Pool. Journal of Physical Chemistry C, 2014, 118, 1285-1293.	1.5	64
52	Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers. Carbon, 2016, 105, 248-259.	5.4	64
53	Bifunctional ultraviolet/ultrasound responsive composite TiO ₂ /polyelectrolyte microcapsules. Nanoscale, 2016, 8, 5170-5180.	2.8	64
54	Influence of silica nanoparticles on the functionality of water-based drilling fluids. Journal of Petroleum Science and Engineering, 2019, 179, 504-512.	2.1	64

#	Article	IF	Citations
55	Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel. Journal of Heat Transfer, 2010, 132, .	1.2	62
56	Bubble formation on a submerged micronozzle. Journal of Colloid and Interface Science, 2010, 343, 291-297.	5.0	61
57	Nanofluid Surface Wettability Through Asymptotic Contact Angle. Langmuir, 2011, 27, 2211-2218.	1.6	61
58	Ultrasonic-aided fabrication of gold nanofluids. Nanoscale Research Letters, 2011, 6, 198.	3.1	58
59	Composite silica nanoparticle/polyelectrolyte microcapsules with reduced permeability and enhanced ultrasound sensitivity. Journal of Materials Chemistry B, 2015, 3, 1888-1897.	2.9	57
60	Experimental study of photothermal conversion using gold/water and MWCNT/water nanofluids. Solar Energy Materials and Solar Cells, 2018, 188, 51-65.	3.0	57
61	Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review. Progress in Aerospace Sciences, 2020, 114, 100618.	6.3	56
62	Experimental photothermal performance of nanofluids under concentrated solar flux. Solar Energy Materials and Solar Cells, 2018, 182, 255-262.	3.0	55
63	Confined growth of a vapour bubble in a capillary tube at initially uniform superheat: Experiments and modelling. International Journal of Heat and Mass Transfer, 2006, 49, 4653-4671.	2.5	54
64	Pool Boiling Heat Transfer of Aqueous TiO2-Based Nanofluids. Journal of Enhanced Heat Transfer, 2006, 13, 231-244.	0.5	54
65	Influence of nanoparticles on boiling heat transfer. Applied Thermal Engineering, 2012, 41, 2-9.	3.0	53
66	Microemulsions stabilized by in-situ synthesized nanoparticles for enhanced oil recovery. Fuel, 2017, 210, 272-281.	3.4	53
67	Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles. Journal of Nanoparticle Research, 2011, 13, 1063-1073.	0.8	52
68	Low frequency heating of gold nanoparticle dispersions for non-invasive thermal therapies. Nanoscale, 2012, 4, 3945.	2.8	52
69	DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds. Chemical Engineering Science, 2017, 172, 79-99.	1.9	52
70	Nanoparticle-enabled delivery of surfactants in porous media. Journal of Colloid and Interface Science, 2018, 519, 44-57.	5.0	51
71	Improved rheology and highâ€ŧemperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet. Journal of Applied Polymer Science, 2019, 136, 47582.	1.3	50
72	Molecular Dynamics Simulation of a Coreâ^'Shell Structured Metallic Nanoparticle. Journal of Physical Chemistry C, 2010, 114, 8688-8696.	1.5	49

#	Article	IF	CITATIONS
73	Discrete particle modeling of granular temperature distribution in a bubbling fluidized bed. Particuology, 2012, 10, 428-437.	2.0	48
74	Frost Self-Removal Mechanism during Defrosting on Vertical Superhydrophobic Surfaces: Peeling Off or Jumping Off. Langmuir, 2018, 34, 14562-14569.	1.6	48
75	Solar photothermal conversion characteristics of hybrid nanofluids: An experimental and numerical study. Renewable Energy, 2019, 141, 937-949.	4.3	48
76	Experimental investigation of startup behaviors of a dual compensation chamber loop heat pipe with insufficient fluid inventory. Applied Thermal Engineering, 2009, 29, 1447-1456.	3.0	47
77	Intracellular hyperthermia: Nanobubbles and their biomedical applications. International Journal of Hyperthermia, 2009, 25, 533-541.	1.1	46
78	Directional Transportation of Impacting Droplets on Wettability-Controlled Surfaces. Langmuir, 2020, 36, 5855-5862.	1.6	46
79	Saturated flow boiling of water in a narrow channel: time-averaged heat transfer coefficients and correlations. Applied Thermal Engineering, 2004, 24, 1207-1223.	3.0	44
80	Solids behaviour in a gas–solid two-phase mixture flowing through a packed particle bed. Chemical Engineering Science, 2005, 60, 5231-5239.	1.9	44
81	Experimental study of curvature effects on jet impingement heat transfer on concave surfaces. Chinese Journal of Aeronautics, 2017, 30, 586-594.	2.8	44
82	A critical assessment of the line tension determined by the modified Young's equation. Physics of Fluids, 2018, 30, .	1.6	44
83	Bubble formation in freezing droplets. Physical Review Fluids, 2019, 4, .	1.0	43
84	Liquid nitrogen injection into water: Pressure build-up and heat transfer. Cryogenics, 2006, 46, 740-748.	0.9	42
85	Development of cryogenic loop heat pipes: A review and comparative analysis. Applied Thermal Engineering, 2015, 89, 180-191.	3.0	42
86	Oxidation and ignition of aluminum nanomaterials. Physical Chemistry Chemical Physics, 2013, 15, 20176.	1.3	41
87	Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development. Applied Physics Reviews, 2015, 2, 011103.	5. 5	41
88	Novel draw solution for forward osmosis based solar desalination. Applied Energy, 2018, 230, 220-231.	5.1	41
89	Experimental investigation of a dual compensation chamber loop heat pipe. International Journal of Heat and Mass Transfer, 2010, 53, 3231-3240.	2.5	40
90	Effect of pilot fuel quantity and type on performance and emissions of natural gas and hydrogen based combustion in a compression ignition engine. International Journal of Hydrogen Energy, 2014, 39, 5163-5175.	3.8	40

#	Article	IF	Citations
91	Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage. Applied Energy, 2017, 189, 697-710.	5.1	40
92	Droplet re-icing characteristics on a superhydrophobic surface. Applied Physics Letters, 2019, 115, .	1.5	40
93	Nanoparticle modified polyacrylamide for enhanced oil recovery at harsh conditions. Fuel, 2020, 268, 117186.	3.4	40
94	Stability and photo-thermal conversion performance of binary nanofluids for solar absorption refrigeration systems. Renewable Energy, 2019, 140, 264-273.	4.3	38
95	Experimental Investigation of the Oxidation of Tin Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 13470-13476.	1.5	37
96	Bubble formation in a quiescent pool of gold nanoparticle suspension. Advances in Colloid and Interface Science, 2010, 159, 72-93.	7.0	37
97	Assessment of elliptic flame front propagation characteristics of iso-octane, gasoline, M85 and E85 in an optical engine. Combustion and Flame, 2014, 161, 696-710.	2.8	37
98	Modeling and analysis of startup of a loop heat pipe. Applied Thermal Engineering, 2010, 30, 2778-2787.	3.0	36
99	Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery. RSC Advances, 2017, 7, 41391-41398.	1.7	36
100	Controlled delivery and release of surfactant for enhanced oil recovery by nanodroplets. Fuel, 2018, 218, 396-405.	3.4	36
101	Modelling of the behaviour of gas–solid two-phase mixtures flowing through packed beds. Chemical Engineering Science, 2006, 61, 1922-1931.	1.9	35
102	Molecular structure characterization of asphaltene in the presence of inhibitors with nanoemulsions. RSC Advances, 2019, 9, 19560-19570.	1.7	35
103	Particle-based hybrid and multiscale methods for nonequilibrium gas flows. Advances in Aerodynamics, 2019, 1, .	1.3	35
104	Molecular dynamics investigation of substrate wettability alteration and oil transport in a calcite nanopore. Fuel, 2019, 239, 1149-1161.	3.4	35
105	UV-Cross-Linkable Multilayer Microcapsules Made of Weak Polyelectrolytes. Langmuir, 2012, 28, 10822-10829.	1.6	34
106	Experimental study of jet impingement heat transfer on a variable-curvature concave surface in a wing leading edge. International Journal of Heat and Mass Transfer, 2015, 90, 92-101.	2.5	34
107	Conjugate local thermal non-equilibrium heat transfer in a cavity filled with a porous medium: Analysis of the element location. International Journal of Heat and Mass Transfer, 2019, 138, 941-960.	2.5	34
108	Numerical simulation of aircraft thermal anti-icing system based on a tight-coupling method. International Journal of Heat and Mass Transfer, 2020, 148, 119061.	2.5	34

#	Article	IF	Citations
109	Stability and Aggregation Kinetics of Titania Nanomaterials under Environmentally Realistic Conditions. Environmental Science & Environmental Science	4.6	33
110	Synthesis of stable iron oxide nanoparticle dispersions in high ionic media. Journal of Industrial and Engineering Chemistry, 2017, 50, 57-71.	2.9	33
111	Molecular Dynamics Simulation of the Salinity Effect on the <i>n</i> -Decane/Water/Vapor Interfacial Equilibrium. Energy & Equilibriu	2.5	33
112	Controlled releases of asphaltene inhibitors by nanoemulsions. Fuel, 2018, 234, 538-548.	3.4	33
113	Experimental study on pool boiling in a porous artery structure. Applied Thermal Engineering, 2019, 149, 377-384.	3.0	33
114	Bubble growth rate from stainless steel substrate and needle nozzles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 240-247.	2.3	32
115	Effect of Low Salinity on the Oil Desorption Efficiency from Calcite and Silica Surfaces. Energy & Energy & Fuels, 2017, 31, 11892-11901.	2.5	32
116	In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications. Materials, 2017, 10, 537.	1.3	32
117	Visualization study on the heat and mass transfer in the evaporator-compensation chamber of a loop heat pipe. Applied Thermal Engineering, 2020, 164, 114472.	3.0	32
118	Characterization of the InGaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system. Energy Conversion and Management, 2013, 76, 177-184.	4.4	31
119	Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity. Chemical Engineering Science, 2020, 211, 115252.	1.9	31
120	Nanoparticle-stabilized microemulsions for enhanced oil recovery from heterogeneous rocks. Fuel, 2020, 274, 117830.	3.4	31
121	Theoretical and experimental investigation of quasi-steady-state bubble growth on top of submerged stainless steel nozzles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369, 11-19.	2.3	30
122	Effect of non-condensable gas on the startup of a loop heat pipe. Applied Thermal Engineering, 2017, 111, 1507-1516.	3.0	30
123	Transport and Deposition of Carbon Nanoparticles in Saturated Porous Media. Energies, 2017, 10, 1151.	1.6	29
124	Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids. International Journal of Heat and Mass Transfer, 2019, 139, 789-801.	2.5	29
125	Dynamics of droplet impacting on a cone. Physics of Fluids, 2021, 33, .	1.6	29
126	Effect of Gold Nanoparticles on the Dynamics of Gas Bubbles. Langmuir, 2010, 26, 6902-6907.	1.6	28

#	Article	IF	Citations
127	Three-dimensional full loop simulation of solids circulation in an interconnected fluidized bed. Powder Technology, 2016, 289, 118-125.	2.1	28
128	Structural design and verification of an innovative whole adaptive variable camber wing. Aerospace Science and Technology, 2019, 89, 11-18.	2.5	28
129	Thermal oxidation of iron nanoparticles and its implication for chemicalâ€looping combustion. Journal of Chemical Technology and Biotechnology, 2011, 86, 375-380.	1.6	27
130	Spreading of triple line and dynamics of bubble growth inside nanoparticle dispersions on top of a substrate plate. Journal of Colloid and Interface Science, 2011, 362, 285-291.	5.0	27
131	Operating characteristics of a miniature cryogenic loop heat pipe. International Journal of Heat and Mass Transfer, 2012, 55, 8093-8099.	2.5	27
132	Experimental study of flow boiling of FC-72 in parallel minichannels under sub-atmospheric pressure. Applied Thermal Engineering, 2011, 31, 3839-3853.	3.0	26
133	Theoretical analysis of steady-state performance of a loop heat pipe with a novel evaporator. Applied Thermal Engineering, 2014, 64, 233-241.	3.0	26
134	Steady-state modeling and analysis of a loop heat pipe under gravity-assisted operation. Applied Thermal Engineering, 2015, 83, 88-97.	3.0	26
135	Modification of the Young–Laplace equation and prediction of bubble interface in the presence of nanoparticles. Advances in Colloid and Interface Science, 2015, 225, 1-15.	7.0	26
136	Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design. Energy Conversion and Management, 2016, 118, 353-363.	4.4	26
137	Gr-Al ₂ O ₃ Nanoparticles-Based Multifunctional Drilling Fluid. Industrial & amp; Engineering Chemistry Research, 2019, 58, 10084-10091.	1.8	26
138	Improved Polymer Flooding in Harsh Environments by Free-Radical Polymerization and the Use of Nanomaterials. Energy & Samp; Fuels, 2019, 33, 1637-1648.	2.5	26
139	Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite. Energy, 2020, 192, 116593.	4.5	26
140	CFD analysis of a nanofluid-based microchannel heat sink. Thermal Science and Engineering Progress, 2020, 20, 100685.	1.3	26
141	Salinity-dependent alterations of static and dynamic contact angles in oil/brine/calcite systems: A molecular dynamics simulation study. Fuel, 2020, 272, 117615.	3.4	26
142	Experimental study of jet structure and pressurisation upon liquid nitrogen injection into water. International Journal of Multiphase Flow, 2010, 36, 940-949.	1.6	25
143	Dependence of Photothermal Conversion Characteristics on Different Nanoparticle Dispersions. Journal of Nanoscience and Nanotechnology, 2015, 15, 3055-3060.	0.9	25
144	Experimental investigation of the performance of a single-stage auto-cascade refrigerator. Heat and Mass Transfer, 2016, 52, 11-20.	1.2	25

#	Article	IF	CITATIONS
145	Energy analysis and shadow modeling of a rectangular type salt gradient solar pond. Solar Energy, 2017, 146, 161-171.	2.9	25
146	Carbon quantum dots with tracer-like breakthrough ability for reservoir characterization. Science of the Total Environment, 2019, 669, 579-589.	3.9	25
147	Effect of evaporator tilt on a loop heat pipe with non-condensable gas. International Journal of Heat and Mass Transfer, 2019, 128, 1072-1080.	2.5	25
148	Heat transfer of gas–solid two-phase mixtures flowing through a packed bed under constant wall heat flux conditions. Chemical Engineering Journal, 2007, 130, 1-10.	6.6	24
149	On the role of structural disjoining pressure to boiling heat transfer of thermal nanofluids. Journal of Nanoparticle Research, 2008, 10, 1129-1140.	0.8	24
150	Experimental study of a nitrogen-charged cryogenic loop heat pipe. Cryogenics, 2012, 52, 557-563.	0.9	24
151	Convective heat transfer of aqueous alumina nanosuspensions in a horizontal mini-channel. Heat and Mass Transfer, 2012, 48, 349-357.	1.2	24
152	Nanoparticle-Related Heat Transfer Phenomenon and Its Application in Biomedical Fields. Heat Transfer Engineering, 2013, 34, 1171-1179.	1.2	24
153	Performance and specific emissions contours of a diesel and RME fueled compression-ignition engine throughout its operating speed and power range. Applied Energy, 2013, 111, 771-777.	5.1	24
154	Lattice Boltzmann simulation of flow past a non-spherical particle. Advanced Powder Technology, 2017, 28, 1486-1494.	2.0	24
155	Nanoparticle-based solar vapor generation: An experimental and numerical study. Energy, 2019, 178, 447-459.	4.5	24
156	Nanodroplets impact on surfaces decorated with ridges. Physical Review Fluids, 2020, 5, .	1.0	24
157	Comparative analysis of CFD models for jetting fluidized beds: The effect of inter-phase drag force. Powder Technology, 2012, 221, 114-122.	2.1	23
158	Thermal-Chemical Characteristics of Al–Cu Alloy Nanoparticles. Journal of Physical Chemistry C, 2015, , 150616125001008.	1.5	23
159	Formulation optimization of reverse microemulsions using design of experiments for nanoparticles synthesis. Chemical Engineering Research and Design, 2017, 125, 367-384.	2.7	23
160	Latent and sensible energy storage enhancement of nano-nitrate molten salt. Solar Energy, 2018, 172, 191-197.	2.9	23
161	Two-phase pressure drop of water during flow boiling in a vertical narrow channel. Experimental Thermal and Fluid Science, 2004, 28, 131-138.	1.5	22
162	The effect of gold nanoparticles on the spreading of triple line. Microfluidics and Nanofluidics, 2010, 8, 843-848.	1.0	22

#	Article	IF	Citations
163	Critical heat flux of nanofluids inside a single microchannel: Experiments and correlations. Chemical Engineering Research and Design, 2014, 92, 2339-2351.	2.7	22
164	Evaporation/boiling heat transfer characteristics in an artery porous structure. Applied Thermal Engineering, 2016, 104, 587-595.	3.0	22
165	Evaluation of clustering role versus Brownian motion effect on the heat conduction in nanofluids: A novel approach. International Journal of Heat and Mass Transfer, 2017, 108, 822-829.	2.5	22
166	Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets. Journal of Colloid and Interface Science, 2017, 506, 83-92.	5.0	22
167	Rheological Characteristics of Molten Salt Seeded with Al2O3 Nanopowder and Graphene for Concentrated Solar Power. Energies, 2019, 12, 467.	1.6	22
168	Polypyrrole–Dopamine Nanofiber Light-Trapping Coating for Efficient Solar Vapor Generation. ACS Applied Materials & Diterfaces, 2021, 13, 57153-57162.	4.0	22
169	Novel design of central dual-receiver for solar power tower. Applied Thermal Engineering, 2015, 91, 1071-1081.	3.0	21
170	Jet impingement heat transfer on a concave surface in a wing leading edge: Experimental study and correlation development. Experimental Thermal and Fluid Science, 2016, 78, 199-207.	1.5	21
171	Fluid–structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 2883-2911.	1.6	21
172	A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets. Physics of Fluids, 2020, 32, .	1.6	20
173	Molten Salt/Metal Foam/Graphene Nanoparticle Phase Change Composites for Thermal Energy Storage. ACS Applied Nano Materials, 2020, 3, 5240-5251.	2.4	20
174	Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel. Renewable Energy, 2021, 179, 1179-1190.	4.3	20
175	A comparative study of pool boiling heat transfer in different porous artery structures. Applied Thermal Engineering, 2022, 202, 117759.	3.0	20
176	Parametric analysis of steady-state operation of a CLHP. Applied Thermal Engineering, 2010, 30, 850-858.	3.0	19
177	Exothermic characteristics of aluminum based nanomaterials. Powder Technology, 2015, 282, 19-24.	2.1	19
178	Experimental investigation on transient characteristics of a dual compensation chamber loop heat pipe subjected to acceleration forces. Applied Thermal Engineering, 2018, 130, 169-184.	3.0	19
179	Atomistic Molecular Dynamic Simulation of Dilute Poly(acrylic acid) Solution: Effects of Simulation Size Sensitivity and Ionic Strength. Industrial & Engineering Chemistry Research, 2018, 57, 17129-17141.	1.8	19
180	Comparative study of two loop heat pipes using R134a as the working fluid. Applied Thermal Engineering, 2020, 164, 114459.	3.0	19

#	Article	IF	CITATIONS
181	Competition of natural convection and thermal creep in a square enclosure. Physics of Fluids, 2020, 32, 102001.	1.6	19
182	Conductivity and frequency dependent specific absorption rate. Journal of Applied Physics, 2013, 113, .	1.1	18
183	Determination of charged pressure of working fluid and its effect on the operation of a miniature CLHP. International Journal of Heat and Mass Transfer, 2013, 63, 454-462.	2.5	18
184	Design of Low Altitude Long Endurance Solar-Powered UAV Using Genetic Algorithm. Aerospace, 2021, 8, 228.	1.1	18
185	Heat transfer of gas–solid two-phase mixtures flowing through a packed bed. Chemical Engineering Science, 2007, 62, 4241-4249.	1.9	17
186	Effect of evaporator tilt on the operating temperature of a loop heat pipe without a secondary wick. International Journal of Heat and Mass Transfer, 2014, 77, 600-603.	2.5	17
187	Stabilization of Polymer Nanocomposites in High-Temperature and High-Salinity Brines. ACS Omega, 2019, 4, 11631-11641.	1.6	17
188	Exergy and economic assessments of solar organic Rankine cycle system with linear V-Shape cavity. Energy Conversion and Management, 2019, 199, 111997.	4.4	17
189	Quiet power-free cooling system enabled by loop heat pipe. Applied Thermal Engineering, 2019, 155, 14-23.	3.0	17
190	Effect of component layout on the operation of a miniature cryogenic loop heat pipe. International Journal of Heat and Mass Transfer, 2013, 60, 61-68.	2.5	16
191	Improved rheological properties and stability of multiwalled carbon nanotubes/polymer in harsh environment. Journal of Applied Polymer Science, 2019, 136, 47205.	1.3	16
192	Departure Velocity of Rolling Droplet Jumping. Langmuir, 2020, 36, 3713-3719.	1.6	16
193	A multiscale volume of fluid method with self-consistent boundary conditions derived from molecular dynamics. Physics of Fluids, 2021, 33, .	1.6	16
194	Dynamic characteristics of binary mixtures in a two-jet fluidized bed. Chemical Engineering Science, 2011, 66, 1702-1714.	1.9	15
195	Synthesis of stable nanoparticles at harsh environment using the synergistic effect of surfactants blend. Journal of Industrial and Engineering Chemistry, 2018, 64, 390-401.	2.9	15
196	Nanoparticles enabled pump-free direct absorption solar collectors. Renewable Energy, 2020, 145, 2337-2344.	4.3	15
197	Experimental investigation of a latent heat thermal energy storage unit encapsulated with molten salt/metal foam composite seeded with nanoparticles. Energy and Built Environment, 2023, 4, 74-85.	2.9	15
198	Liquid Film Sculpture via Droplet Impacting on Microstructured Heterowettable Surfaces. Advanced Functional Materials, 2022, 32, .	7.8	15

#	Article	IF	Citations
199	Hydrodynamics of gas–solid two-phase mixtures flowing upward through packed beds. Powder Technology, 2005, 153, 13-22.	2.1	14
200	Hydrodynamics of a fluidized bed co-combustor for tobacco waste and coal. Bioresource Technology, 2012, 119, 339-348.	4.8	14
201	Unsteady simulation of aircraft electro-thermal deicing process with temperature-based method. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234, 388-400.	0.7	14
202	Effect of evaporator/condenser elevations on a loop heat pipe with non-condensable gas. Applied Thermal Engineering, 2020, 180, 115711.	3.0	14
203	CFD simulation of a gas–solid fluidized bed with two vertical jets. Particuology, 2010, 8, 425-432.	2.0	13
204	Modeling and Analysis of Supercritical Startup of a Cryogenic Loop Heat Pipe. Journal of Heat Transfer, 2011, 133, .	1.2	12
205	Investigation of nanofluid bubble characteristics under non-equilibrium conditions. Chemical Engineering and Processing: Process Intensification, 2014, 86, 116-124.	1.8	12
206	Experimental study on an acetone-charged loop heat pipe with a nickel wick. International Journal of Thermal Sciences, 2019, 146, 106104.	2.6	12
207	Pore-scale simulation of water/oil displacement in a water-wet channel. Frontiers of Chemical Science and Engineering, 2019, 13, 803-814.	2.3	12
208	Quantification of wettability characteristics for carbonates using different salinities. Journal of Petroleum Science and Engineering, 2019, 173, 501-511.	2.1	12
209	Structural design and experimental verification of a novel split aileron wing. Aerospace Science and Technology, 2020, 98, 105635.	2.5	12
210	Experimental investigation on convective heat transfer of Shear-thinning fluids by elastic turbulence in a serpentine channel. Experimental Thermal and Fluid Science, 2020, 112, 109997.	1.5	12
211	Experimental study on a dual compensation chamber loop heat pipe with dual bayonet tubes. Applied Thermal Engineering, 2020, 180, 115821.	3.0	12
212	Experimental study on flow and heat transfer enhancement by elastic instability in swirling flow. International Journal of Thermal Sciences, 2020, 157, 106504.	2.6	12
213	Ni–Fe/Reduced Graphene Oxide Nanocomposites for Hexavalent Chromium Reduction in an Aqueous Environment. ACS Omega, 2022, 7, 4041-4051.	1.6	12
214	Electromagnetic heating effect of aggregated gold nanoparticle colloids. Journal of Applied Physics, 2014, 115, 094903.	1.1	11
215	Effects of salinity on the onset of elastic turbulence in swirling flow and curvilinear microchannels. Physics of Fluids, 2019, 31, 123106.	1.6	11
216	Flow boiling of water in a narrow vertical channel at low mass flux: observations of local phenomena., 2002,,.		11

#	Article	IF	CITATIONS
217	Theoretical analyses on boiling critical heat flux with porous media. Heat and Mass Transfer, 2005, 41, 780-784.	1.2	10
218	CFD simulation of bubbling and collapsing characteristics in a gas-solid fluidized bed. Petroleum Science, 2009, 6, 69-75.	2.4	10
219	Assessment of elliptic flame front propagation characteristics of hydrogen in an optically accessible spark ignition engine. International Journal of Hydrogen Energy, 2013, 38, 15452-15468.	3.8	10
220	Examination of drill pipe corrosion in water-based drilling fluids under wellbore conditions. Corrosion Engineering Science and Technology, 2018, 53, 183-187.	0.7	10
221	Nanoparticle Formation in Stable Microemulsions for Enhanced Oil Recovery Application. Industrial & Lamp; Engineering Chemistry Research, 2019, 58, 12664-12677.	1.8	10
222	Influence of carbon quantum dots on the viscosity reduction of polyacrylamide solution. Fuel, 2019, 248, 205-214.	3.4	10
223	Pore-Scale Displacement Efficiency during Different Salinity Water Flooding in Hydrophilic and Hydrophobic Microstructures. Energy & Samp; Fuels, 2019, 33, 3859-3870.	2.5	10
224	Pore-scale dynamics of nanofluid-enhanced NAPL displacement in carbonate rock. Journal of Contaminant Hydrology, 2020, 230, 103598.	1.6	10
225	Effect on Heat Transfer of Particle Migration in Suspensions of Nanoparticles Flowing Through Minichannels. , 2004, , 939.		9
226	Vertical upward flow of gas–solid two-phase mixtures through monolith channels. Powder Technology, 2005, 153, 51-58.	2.1	9
227	Solids behaviour in a dilute gas–solid two-phase mixture flowing through monolith channels. Chemical Engineering Science, 2006, 61, 1561-1570.	1.9	9
228	Photothermal conversion characteristics of gold nanoparticles under different filter conditions. Energy, 2017, 141, 32-39.	4.5	9
229	Design and implementation of an innovative airborne electric propulsion measure system of fixed-wing UAV. Aerospace Science and Technology, 2021, 109, 106357.	2.5	9
230	Atomistic-scale investigations of hyperthermal oxygen–graphene interactions via reactive molecular dynamics simulation: The gas effect. Physics of Fluids, 2021, 33, 052107.	1.6	9
231	Molecular insight of the interface evolution of silicon carbide under hyperthermal atomic oxygen impact. Physics of Fluids, 2022, 34, .	1.6	9
232	Dielectric Property Measurement of Gold Nanoparticle Dispersions in the Millimeter Wave Range. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34, 140-151.	1.2	8
233	Air film evolution during droplet impact onto a solid surface. Physics of Fluids, 2021, 33, .	1.6	8
234	Low intensity focused ultrasound responsive microcapsules for non-ablative ultrafast intracellular release of small molecules. Journal of Materials Chemistry B, 2021, 9, 2384-2393.	2.9	8

#	Article	IF	Citations
235	Multi-Objective Optimization of Low Reynolds Number Airfoil Using Convolutional Neural Network and Non-Dominated Sorting Genetic Algorithm. Aerospace, 2022, 9, 35.	1.1	8
236	Umbrella evaporator for continuous solar vapor generation and salt harvesting from seawater. Cell Reports Physical Science, 2022, 3, 100940.	2.8	8
237	Kinetic Study of Controlled Asphaltene Inhibitor Release from Nanoemulsions. Langmuir, 2019, 35, 10795-10807.	1.6	7
238	Effects of anisotropic composite skin on electrothermal anti-icing system. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 5403-5413.	0.7	7
239	Experimental study on operating characteristics of a dual compensation chamber loop heat pipe in periodic acceleration fields. Applied Thermal Engineering, 2020, 176, 115419.	3.0	7
240	Effects of rheological properties on heat transfer enhancements by elastic instability in von-Karman swirling flow. International Journal of Heat and Mass Transfer, 2020, 152, 119535.	2.5	7
241	Coupled surface-volume pyrolysis effects of carbon-phenolic resin composites under hyperthermal non-equilibrium flows. Physics of Fluids, 2022, 34, .	1.6	7
242	Examination of the Mass–Heat Transfer Analogy for Two-Phase Flows in Narrow Channels. Chemical Engineering Research and Design, 2002, 80, 729-738.	2.7	6
243	A reactive molecular dynamic simulation of oxidation of a silicon nanocluster. Journal of Nanoparticle Research, $2013,15,1.$	0.8	6
244	Theoretical investigation of natural convection heat transfer in inclined and fully divided CO2 enclosures on Mars. International Journal of Heat and Mass Transfer, 2018, 126, 1113-1122.	2.5	6
245	A numerical study on the gas fluidisation of secondary agglomerates of nanoparticles. Progress in Natural Science: Materials International, 2005, 15, 111-116.	1.8	5
246	Surface Melting and Sintering of Metallic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2010, 10, 8010-8017.	0.9	5
247	Convective Heat Transfer of Alumina Nanofluids in a Microchannel. , 2010, , .		5
248	Comparative analysis of CFD models for jetting fluidized beds: Effect of particle-phase viscosity. Particuology, 2012, 10, 444-449.	2.0	5
249	A novel inhibitor for controlling Iraqi asphaltene problems. , 2017, , .		5
250	Measurement of Similarity in Academic Contexts. Publications, 2017, 5, 18.	1.9	5
251	Protective composite silica/polyelectrolyte shell with enhanced tolerance to harsh acid and alkali conditions. Journal of Colloid and Interface Science, 2018, 512, 198-207.	5.0	5
252	Investigation on thermo-physical properties of molten salt enhanced with nanoparticle and copper foam. , 2018, , .		5

#	Article	IF	CITATIONS
253	Nanoparticle Assisted EOR during Sand-Pack Flooding: Electrical Tomography to Assess Flow Dynamics and Oil Recovery. Sensors, 2019, 19, 3036.	2.1	5
254	Numerical study of cuttings transport of nanoparticleâ€based drilling fluid. Engineering Reports, 2020, 2, e12154.	0.9	5
255	Phase change heat transfer of liquid nitrogen upon injection into aqueous based TiO2 nanofluids. Journal of Nanoparticle Research, 2008, 10, 987-996.	0.8	4
256	CFD simulation of jet behaviors in a binary gas-solid fluidized bed: comparisons with experiments. Frontiers of Chemical Engineering in China, 2010, 4, 242-249.	0.6	4
257	Experimental study of electromagnetic heating of gold nanoparticle dispersions at 200 kHz. Nanomedicine, 2013, 8, 215-222.	1.7	4
258	Flow Boiling Heat Transfer in Micro-Channel Heat Sinks under Sub-Atmospheric Pressures. Experimental Heat Transfer, 2013, 26, 85-113.	2.3	4
259	Production and characterization of Al-Cu and Al-Ni nanoparticles. Materials Research Society Symposia Proceedings, 2015, 1758, 44.	0.1	4
260	Analysis on the Aerodynamic Characteristics of a Continuous Whole Variable Camber Airfoil. Journal of Physics: Conference Series, 2019, 1215, 012005.	0.3	4
261	Molecular dynamics insight into viscosity reduction of hydrolysed polyacrylamide by using carbon quantum dots. RSC Advances, 2021, 11, 26037-26048.	1.7	4
262	Startup characteristics of an ammonia loop heat pipe with a rectangular evaporator. Heat and Mass Transfer, 2022, 58, 813-831.	1.2	4
263	Impact-induced hole growth and liquid film dewetting on superhydrophobic surfaces. Physics of Fluids, 2021, 33, 112113.	1.6	4
264	Performance Assessment of a Closed-Loop Minichannel Heat Sink Using Water and FC-72 as Coolants. Heat Transfer Engineering, 2013, 34, 500-510.	1.2	3
265	Experimental study of thermal oxidation of nanoscale alloys of aluminium and zinc (nAlZn). Journal of Physics and Chemistry of Solids, 2015, 85, 188-196.	1.9	3
266	Aqueous lithium bromide nanosolution for solar absorption refrigeration systems. AIP Conference Proceedings, 2019, , .	0.3	3
267	Flow resistance and convective heat transfer by elastic turbulence in 1D/2D/3D geometries. International Journal of Thermal Sciences, 2022, 176, 107512.	2.6	3
268	Sensitivity Analysis of the Catalysis Recombination Mechanism on Nanoscale Silica Surfaces. Nanomaterials, 2022, 12, 2370.	1.9	3
269	CFD investigation of gas-solids flow in a new fluidized catalyst cooler. Powder Technology, 2016, 304, 108-119.	2.1	2
270	Nanofluids-based and porous media-based solar evaporation: A comparative study. AIP Conference Proceedings, 2019, , .	0.3	2

#	Article	IF	Citations
271	Effects of skin heat conduction on aircraft icing process. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235, 1306-1317.	0.7	2
272	4E assessment of power generation systems for a mobile house in emergency condition using solar energy: a case study. Journal of Thermal Analysis and Calorimetry, 2021, 145, 751-767.	2.0	2
273	Large-Scale Dewetting via Surfactant-Laden Droplet Impact. Langmuir, 2021, 37, 13729-13736.	1.6	2
274	Surface Wettability Through Asymptotic Contact Angle. , 2009, , .		1
275	Subcooled Flow Boiling Heat Transfer of Nanofluids in a Microchannel. , 2009, , .		1
276	Editorial: Crossroads of Particle Science and Technology. Powder Technology, 2016, 304, 1.	2.1	1
277	Cu-Sn-Pb Alloy Fabricated by Powder Metallurgy and Its Application for Standard Curve Establishment of Portable X-Ray Fluorescence Instrument for Alloy Analysis on Bronze Relics. MRS Advances, 2017, 2, 2095-2100.	0.5	1
278	Design and development of a direct injection system for cryogenic engines. Cryogenics, 2018, 91, 77-86.	0.9	1
279	A Numerical Study of Fluid Flow and Heat Transfer in Carbon Dioxide Enclosures on Mars. Energies, 2018, 11, 756.	1.6	1
280	Structural Design and Aerodynamic Characteristic of an Innovative Split Aileron Configuration. , 2019, , .		1
281	Mechanisms of Convective Heat Transfer of Nanofluids. , 2008, , .		0
282	Bubble Formation on Top of Submerged Needle and Substrate Plates. , 2010, , .		0
283	Effect of Nanoparticles on the Spreading of Bubble Triple Line on Top of a Stainless Steel Substrate Nozzle. , 2010, , .		0
284	Critical Heat Flux During Subcooled Flow Boiling of Alumina Nanofluids in a Narrow Channel. , 2010, , .		0
285	Experimental characterization of Gold Nanoparticle suspensions at W band using a quasi-optical bench. , $2011, , .$		0
286	High-power calibration and measurement method for bio-electromagnetic study. IET Science, Measurement and Technology, 2012, 6, 420.	0.9	0
287	Dielectric measurement of gold nanoparticle dispersions using THz-Time domain spectroscopy. , 2012, , .		0
288	Author's reply to the comments on "Experimental study of flow boiling of FC-72 in parallel minichannels under sub-atmospheric pressureâ€. Applied Thermal Engineering, 2013, 57, 48-49.	3.0	0

#	Article	IF	CITATIONS
289	Hydrodynamics of binary mixtures in a tapered gas–solid fluidized bed. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 498-506.	0.8	O
290	Experimental Investigation into Convective Heat Transfer of Boger Fluids by Elastic Turbulence within the Serpentine Channel. , $2019, \dots$		0
291	10.1063/1.5109283.1., 2019, , .		O