
Nicholas C Zachos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8852720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An inÂvitro chronic damage model impairs inflammatory and regenerative responses in human colonoid monolayers. Cell Reports, 2022, 38, 110283.	6.4	9
2	Depletion of the apical endosome in response to viruses and bacterial toxins provides cell-autonomous host defense at mucosal surfaces. Cell Host and Microbe, 2022, 30, 216-231.e5.	11.0	6
3	Editorial: Host-Microbiome Interactions and Influence on Performance During Acute Environmental, Nutritional, Physical, and Cognitive Stress, Volume II. Frontiers in Physiology, 2022, 13, 894922.	2.8	Ο
4	Coronin 1A is Uniquely Expressed in the Human Follicle Associated Epithelium and is Required For Human M Cell Maturation and Function. FASEB Journal, 2022, 36, .	0.5	0
5	Epithelial and Neutrophil Interactions and Coordinated Response to <i>Shigella</i> in a Human Intestinal Enteroid-Neutrophil Coculture Model. MBio, 2022, 13, .	4.1	8
6	Intestinal stem cell-derived enteroids from morbidly obese patients preserve obesity-related phenotypes: Elevated glucose absorption and gluconeogenesis. Molecular Metabolism, 2021, 44, 101129.	6.5	17
7	Optimizing Human Intestinal Enteroids for Environmental Monitoring of Human Norovirus. Food and Environmental Virology, 2021, 13, 470-484.	3.4	9
8	Recovery of Infectious Human Norovirus GII.4 Sydney From Fomites via Replication in Human Intestinal Enteroids. Frontiers in Cellular and Infection Microbiology, 2021, 11, 693090.	3.9	3
9	Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes, 2021, 13, 1988390.	9.8	15
10	Glucosylceramide production maintains colon integrity in response to <i>Bacteroides fragilis</i> toxinâ€induced colon epithelial cell signaling. FASEB Journal, 2020, 34, 15922-15945.	0.5	20
11	Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium?. Frontiers in Cell and Developmental Biology, 2020, 8, 583919.	3.7	35
12	Co ulture System of Human Enteroids/Colonoids with Innate Immune Cells. Current Protocols in Immunology, 2020, 131, e113.	3.6	40
13	Epithelial WNT2B and Desert Hedgehog Are Necessary for Human Colonoid Regeneration after Bacterial Cytotoxin Injury. IScience, 2020, 23, 101618.	4.1	8
14	Mucus layer modeling of human colonoids during infection with enteroaggragative E. coli. Scientific Reports, 2020, 10, 10533.	3.3	29
15	Using Enteroendocrine Cell–Enriched Human Enteroids to Evaluate Responses to Gut Stimuli. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 291-292.	4.5	1
16	Evaluating Shigella flexneri Pathogenesis in the Human Enteroid Model. Infection and Immunity, 2019, 87, .	2.2	71
17	Intestinal in vitro and ex vivo Models to Study Host-Microbiome Interactions and Acute Stressors. Frontiers in Physiology, 2018, 9, 1584.	2.8	102
18	Enterohemorrhagic E. coli (EHEC)—Secreted Serine Protease EspP Stimulates Electrogenic Ion Transport in Human Colonoid Monolayers. Toxins, 2018, 10, 351.	3.4	16

NICHOLAS C ZACHOS

#	Article	IF	CITATIONS
19	Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion. Cell Host and Microbe, 2018, 23, 775-785.e5.	11.0	268
20	A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E570-E579.	7.1	112
21	The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology. Annual Review of Physiology, 2017, 79, 291-312.	13.1	46
22	PDZ domain-dependent regulation of NHE3 protein by both internal Class II and C-terminal Class I PDZ-binding motifs. Journal of Biological Chemistry, 2017, 292, 8279-8290.	3.4	6
23	Human Intestinal Enteroids: New Models to Study Gastrointestinal Virus Infections. Methods in Molecular Biology, 2017, 1576, 229-247.	0.9	112
24	A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Scientific Reports, 2017, 7, 45270.	3.3	274
25	Enterotoxigenic Escherichia coli is phagocytosed by macrophages underlying villus-like intestinal epithelial cells: modeling ex vivo innate immune defenses of the human gut. Gut Microbes, 2017, , 00-00.	9.8	16
26	Phenylquinoxalinone CFTR activator as potential prosecretory therapy for constipation. Translational Research, 2017, 182, 14-26.e4.	5.0	15
27	Benzopyrimidoâ€pyrroloâ€oxazineâ€dione CFTR inhibitor (R)â€BPOâ€27 for antisecretory therapy of diarrheas caused by bacterial enterotoxins. FASEB Journal, 2017, 31, 751-760.	0.5	43
28	Enterohemorrhagic Escherichia coli Reduces Mucus and Intermicrovillar Bridges in Human Stem Cell-Derived Colonoids. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 48-62.e3.	4.5	195
29	Human mini-guts: new insights into intestinal physiology and host–pathogen interactions. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 633-642.	17.8	104
30	Human Enteroids/Colonoids and Intestinal Organoids Functionally Recapitulate Normal Intestinal Physiology and Pathophysiology. Journal of Biological Chemistry, 2016, 291, 3759-3766.	3.4	238
31	Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology. Gastroenterology, 2016, 150, 638-649.e8.	1.3	160
32	Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. Journal of Virology, 2016, 90, 43-56.	3.4	298
33	Human and mouse tissue-engineered small intestine both demonstrate digestive and absorptive function. American Journal of Physiology - Renal Physiology, 2015, 308, G664-G677.	3.4	88
34	Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Human Molecular Genetics, 2015, 24, 6614-6623.	2.9	111
35	Carbachol-Mediated Endocytosis of NHE3 Involves a Clathrin-Independent Mechanism Requiring Lipid Rafts and Cdc42. Cellular Physiology and Biochemistry, 2014, 33, 869-881.	1.6	8
36	Human enteroids as an <i>ex-vivo</i> model of host–pathogen interactions in the gastrointestinal tract. Experimental Biology and Medicine, 2014, 239, 1124-1134.	2.4	169

NICHOLAS C ZACHOS

#	Article	IF	CITATIONS
37	Translating Molecular Physiology of Intestinal Transport Into Pharmacologic Treatment of Diarrhea: Stimulation of Na+ Absorption. Clinical Gastroenterology and Hepatology, 2014, 12, 27-31.	4.4	42
38	PLC-γ directly binds activated c-Src, which is necessary for carbachol-mediated inhibition of NHE3 activity in Caco-2/BBe cells. American Journal of Physiology - Cell Physiology, 2013, 305, C266-C275.	4.6	7
39	TMEM16A and NHERF1 Regulate Ca2+ and cAMP Stimulated Cl―Secretion in Murine Colon. FASEB Journal, 2012, 26, 1111.1.	0.5	0
40	Phospholipase C-Î ³ Binds Directly to the Na+/H+ Exchanger 3 and Is Required for Calcium Regulation of Exchange Activity. Journal of Biological Chemistry, 2009, 284, 19437-19444.	3.4	19
41	NHERF3 (PDZK1) Contributes to Basal and Calcium Inhibition of NHE3 Activity in Caco-2BBe Cells. Journal of Biological Chemistry, 2009, 284, 23708-23718.	3.4	32
42	Regulation of Intestinal Electroneutral Sodium Absorption and the Brush Border Na ⁺ /H ⁺ Exchanger by Intracellular Calcium. Annals of the New York Academy of Sciences, 2009, 1165, 240-248.	3.8	26
43	Elevated Intracellular Calcium Stimulates NHE3 Activity by an IKEPP (NHERF4) Dependent Mechanism. Cellular Physiology and Biochemistry, 2008, 22, 693-704.	1.6	28
44	MOLECULAR PHYSIOLOGY OF INTESTINAL N+/H+EXCHANGE. Annual Review of Physiology, 2005, 67, 411-443.	13.1	333