
Thomas Schnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8852656/publications.pdf Version: 2024-02-01

THOMAS SCHNELL

#	Article	lF	CITATIONS
1	Review of sensor-to-eye latency effects in degraded visual environment mitigations. , 2018, , .		Ο
2	Helicopter transportation in the era of thrombectomy: The next frontier for acute stroke treatment and research. European Stroke Journal, 2016, 1, 171-179.	2.7	22
3	Human-in-the-loop Evaluation of an Information Management and Notification System to Improve Aircraft State Awareness. , 2015, , .		5
4	Sensitive, Diagnostic and Multifaceted Mental Workload Classifier (PHYSIOPRINT). Lecture Notes in Computer Science, 2015, , 101-111.	1.0	9
5	A Developmental Perspective on Word Literacy from Kindergarten Through the Second Grade. Journal of Educational Research, 2013, 106, 132-145.	0.8	8
6	187 Computer Modeling to Investigate the Risk of All-Terrain Vehicle Rollover While Turning. Annals of Emergency Medicine, 2012, 60, S67.	0.3	0
7	EOG artifact removal using a wavelet neural network. Neurocomputing, 2012, 97, 374-389.	3.5	81
8	Thermal Imaging as a Way to Classify Cognitive Workload. , 2010, , .		30
9	Trade-Offs in Synthetic Vision System Display Resolution, Field of Regard, Terrain Data Density, Texture, and Shading During Off-Path Operations. The International Journal of Aviation Psychology, 2009, 19, 33-48.	0.7	9
10	The Cognitive Pilot Helmet: enabling pilot-aware smart avionics. Proceedings of SPIE, 2009, , .	0.8	2
11	Effect of Luminance and Text Size on Information Acquisition Time from Traffic Signs. Transportation Research Record, 2009, 2122, 52-62.	1.0	30
12	Review and Development of Recommended Minimum Pavement Marking Retroreflectivity Levels. Transportation Research Record, 2008, 2055, 71-77.	1.0	11
13	Effects of latency on flight information displays. , 2007, , .		2
14	Development of a Model to Calculate Roadway Luminance Induced by Fixed Roadway Lighting. Transportation Research Record, 2006, 1973, 130-141.	1.0	2
15	Color Performance of Yellow Pavement Markings at Night in the Field. Transportation Research Record, 2006, 1973, 120-129.	1.0	1
16	Development of a Model to Calculate Roadway Luminance Induced by Fixed Roadway Lighting. Transportation Research Record, 2006, 1973, 130-141.	1.0	2
17	Improved Flight Technical Performance in Flight Decks Equipped With Synthetic Vision Information System Displays. The International Journal of Aviation Psychology, 2004, 14, 79-102.	0.7	54
18	Performance Evaluation of Pavement Markings Under Dry, Wet, and Rainy Conditions in the Field. Transportation Research Record, 2004, 1877, 38-49.	1.0	18

THOMAS SCHNELL

#	Article	IF	CITATIONS
19	Traffic Sign Luminance Requirements of Nighttime Drivers for Symbolic Signs. Transportation Research Record, 2004, 1862, 24-35.	1.0	11
20	Nighttime Visibility and Retroreflectance of Pavement Markings in Dry, Wet, and Rainy Conditions. Transportation Research Record, 2003, 1824, 144-155.	1.0	15
21	Viewing Ground-Mounted Diagrammatic Guide Signs Before Entrance Ramps at Night: Driver Eye Scanning Behavior. Transportation Research Record, 2003, 1843, 61-69.	1.0	7
22	Effectiveness of Ground-Mounted Diagrammatic Advance Guide Signs for Freeway Entrance Ramps. Transportation Research Record, 2003, 1843, 70-80.	1.0	15
23	Evaluation of Traffic Flow Analysis Tools Applied to Work Zones Based on Flow Data Collected in the Field. Transportation Research Record, 2002, 1811, 57-66.	1.0	21
24	Influence of Pavement Marking Angular Systems on Visibility Predictions Using Computer Models. Transportation Research Record, 2001, 1754, 57-67.	1.0	0
25	Pedestrian Visibility Under Automobile Low-Beam Headlight Illumination: With and Without Headlight Covers. Transportation Research Record, 2001, 1773, 114-126.	1.0	1
26	Is Wider Better?: Enhancing Pavement Marking Visibility for Older Drivers. Proceedings of the Human Factors and Ergonomics Society, 2001, 45, 1617-1621.	0.2	1
27	Legibility Distances of Fluorescent Traffic Signs and Their Normal Color Counterparts. Transportation Research Record, 2001, 1754, 31-41.	1.0	8
28	Tarvip, a PC-Based Visibility Model for Normal and Ultra-Violet Activated Pavement Markings. Proceedings of the Human Factors and Ergonomics Society, 2001, 45, 1320-1323.	0.2	5
29	Computer-Based Modeling to Determine the Visibility and Minimum Retroreflectivity of Pavement Markings. Transportation Research Record, 2000, 1708, 47-60.	1.0	8
30	Minimum In-Service Retroreflectivity of Pavement Markings. Transportation Research Record, 2000, 1715, 60-70.	1.0	19
31	Legibility of Traffic Sign Text and Symbols. Transportation Research Record, 1999, 1692, 142-151.	1.0	14
32	Recognition Distances of Different Pavement Arrow Designs During Daytime and Nighttime. Transportation Research Record, 1999, 1692, 119-128.	1.0	3
33	Driver-Headlamp Dimensions, Driver Characteristics, and Vehicle and Environmental Factors in Retroreflective Target Visibility Calculations. Transportation Research Record, 1999, 1692, 106-118.	1.0	13
34	Visual Target Detection Models for Civil Twilight and Night Driving Conditions. Transportation Research Record, 1999, 1692, 49-65.	1.0	5
35	Visibility of Road Markings as a Function of Age, Retroreflectivity Under Low-Beam and High-Beam Illumination at Night. Transportation Research Record, 1999, 1692, 152-163.	1.0	22
36	Driver Preview Distances at Night Based on Driver Eye Scanning Recordings as a Function of Pavement Marking Retroreflectivities. Transportation Research Record, 1999, 1692, 129-141.	1.0	10

THOMAS SCHNELL

#	Article	IF	CITATIONS
37	Reflective Properties of Selected Road Surfaces for an Automobile Headlamp Geometry. Transportation Research Record, 1999, 1657, 79-90.	1.0	8
38	Driver Eye-Scanning Behavior as Function of Pavement Marking Configuration. Transportation Research Record, 1997, 1605, 62-72.	1.0	10
39	Visibility of New Centerline and Edge Line Pavement Markings. Transportation Research Record, 1997, 1605, 49-61.	1.0	9
40	Visual Detection and Recognition of Fluorescent Color Targets Versus Nonfluorescent Color Targets as a Function of Peripheral Viewing Angle and Target Size. Transportation Research Record, 1997, 1605, 28-40.	1.0	20
41	Visibility of New Dashed Yellow and White Center Stripes as Function of Material Retroreflectivity. Transportation Research Record, 1996, 1553, 73-80.	1.0	9
42	Conspicuity Advantage of Fluorescent Color Targets in the Field. Proceedings of the Human Factors and Ergonomics Society, 1996, 40, 915-918.	0.2	1
43	A Method to Assign Weights of Importance to Design Requirements in Human-Machine Systems Design. Proceedings of the Human Factors and Ergonomics Society, 1996, 40, 1046-1050.	0.2	1
44	Visibility of Yellow Center Line Pavement Markings as a Function of line Configuration and Line Width. Proceedings of the Human Factors and Ergonomics Society, 1996, 40, 919-922.	0.2	7
45	Human Factors Considerations of Aircraft Displays. , 0, , .		0
46	Adaptation of the Cognitive Avionic Tool Set (CATS) into Automotive Human Machine Interface Design Process. , 0, , .		3