Baohui Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8852474/publications.pdf

Version: 2024-02-01

85541 87888 5,553 85 38 h-index citations papers

g-index 85 85 85 3077 docs citations times ranked citing authors all docs

71

#	Article	IF	Citations
1	Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biology, 2017, 18, 161.	8.8	363
2	Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics, 2017, 49, 773-779.	21.4	341
3	Genetic Redundancy in Soybean Photoresponses Associated With Duplication of the Phytochrome A Gene. Genetics, 2008, 180, 995-1007.	2.9	335
4	Two Coordinately Regulated Homologs of <i>FLOWERING LOCUS T</i> Are Involved in the Control of Photoperiodic Flowering in Soybean. Plant Physiology, 2010, 154, 1220-1231.	4.8	298
5	The Soybean Stem Growth Habit Gene <i>Dt1</i> Is an Ortholog of Arabidopsis <i>TERMINAL FLOWER1</i> Â Â Â. Plant Physiology, 2010, 153, 198-210.	4.8	252
6	Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 2020, 52, 428-436.	21.4	229
7	QTL Mapping of Domestication-related Traits in Soybean (Glycine max). Annals of Botany, 2007, 100, 1027-1038.	2.9	205
8	Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biology, 2013, 13, 91.	3.6	182
9	A New Dominant Gene <i>E9</i> Conditions Early Flowering and Maturity in Soybean. Crop Science, 2014, 54, 2529-2535.	1.8	173
10	Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50, 1435-1441.	21.4	168
11	A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biology, 2016, 16, 20.	3.6	159
12	CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biology, 2019, 19, 131.	3.6	119
13	Perspectives on the Application of Genome-Editing Technologies in Crop Breeding. Molecular Plant, 2019, 12, 1047-1059.	8.3	118
14	GmFT2a and GmFT5a Redundantly and Differentially Regulate Flowering through Interaction with and Upregulation of the bZIP Transcription Factor GmFDL19 in Soybean. PLoS ONE, 2014, 9, e97669.	2.5	117
15	GmFT4, a Homolog of FLOWERING LOCUS T, Is Positively Regulated by E1 and Functions as a Flowering Repressor in Soybean. PLoS ONE, 2014, 9, e89030.	2.5	115
16	Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 2021, 63, 981-994.	8.5	107
17	Allelic Combinations of Soybean Maturity Loci E1, E2, E3 and E4 Result in Diversity of Maturity and Adaptation to Different Latitudes. PLoS ONE, 2014, 9, e106042.	2.5	103
18	CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biology, 2019, 19, 562.	3.6	98

#	Article	IF	CITATIONS
19	The Soybean-Specific Maturity Gene <i>E1</i> Family of Floral Repressors Controls Night-Break Responses through Down-Regulation of <i>FLOWERING LOCUS T</i> Orthologs Â. Plant Physiology, 2015, 168, 1735-1746.	4.8	87
20	Genetic Variation in Soybean at the Maturity Locus E4 Is Involved in Adaptation to Long Days at High Latitudes. Agronomy, 2013, 3, 117-134.	3.0	86
21	A soybean quantitative trait locus that promotes flowering under long days is identified as <i>FT5a</i> , a <i>FLOWERING LOCUS T</i> ortholog. Journal of Experimental Botany, 2016, 67, 5247-5258.	4.8	83
22	Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of $\langle i \rangle$ GmmiR156b $\langle i \rangle$. Plant Biotechnology Journal, 2019, 17, 50-62.	8.3	78
23	Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal, 2022, 20, 256-282.	8.3	76
24	A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	75
25	Soybean <i>AP1</i> homologs control flowering time and plant height. Journal of Integrative Plant Biology, 2020, 62, 1868-1879.	8.5	74
26	<i>GmCOL1a</i> and <i>GmCOL1b</i> Function as Flowering Repressors in Soybean Under Long-Day Conditions. Plant and Cell Physiology, 2015, 56, 2409-2422.	3.1	73
27	Molecular mechanisms of flowering under long days and stem growth habit in soybean. Journal of Experimental Botany, 2017, 68, erw394.	4.8	72
28	Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS ONE, 2017, 12, e0179554.	2.5	69
29	Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nature Communications, 2021, 12, 5445.	12.8	64
30	Adaptive Mechanisms of Soybean Grown on Saltâ€Affected Soils. Land Degradation and Development, 2018, 29, 1054-1064.	3.9	63
31	Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Plant Systematics and Evolution, 2012, 298, 1217-1227.	0.9	61
32	Two homologous <i>LHY</i> pairs negatively control soybean drought tolerance by repressing the abscisic acid responses. New Phytologist, 2021, 229, 2660-2675.	7.3	61
33	Quantitative Trait Locus Mapping of Flowering Time and Maturity in Soybean Using Next-Generation Sequencing-Based Analysis. Frontiers in Plant Science, 2018, 9, 995.	3.6	57
34	A new dominant locus, E11, controls early flowering time and maturity in soybean. Molecular Breeding, 2019, 39, 1.	2.1	56
35	Light―and temperatureâ€entrainable circadian clock in soybean development. Plant, Cell and Environment, 2020, 43, 637-648.	5.7	52
36	QTL Mapping for Photoperiod Insensitivity of a Japanese Soybean Landrace Sakamotowase. Journal of Heredity, 2010, 101, 251-256.	2.4	51

#	Article	IF	CITATIONS
37	GmmiR156b overexpression delays flowering time in soybean. Plant Molecular Biology, 2015, 89, 353-363.	3.9	49
38	Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Molecular Plant, 2022, 15, 308-321.	8.3	48
39	A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Current Biology, 2022, 32, 1728-1742.e6.	3.9	46
40	Overcoming the genetic compensation response of soybean florigens to improve adaptation and yield at low latitudes. Current Biology, 2021, 31, 3755-3767.e4.	3.9	42
41	FT5a interferes with the Dt1â€AP1 feedback loop to control flowering time and shoot determinacy in soybean. Journal of Integrative Plant Biology, 2021, 63, 1004-1020.	8.5	37
42	The Soybean Gene J Contributes to Salt Stress Tolerance by Up-Regulating Salt-Responsive Genes. Frontiers in Plant Science, 2020, 11, 272.	3.6	36
43	Functional divergence between soybean FLOWERING LOCUS T orthologues FT2a and FT5a in post-flowering stem growth. Journal of Experimental Botany, 2019, 70, 3941-3953.	4.8	35
44	A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean. PLoS ONE, 2015, 10, e0128527.	2.5	35
45	A recent retrotransposon insertion of <i>J</i> caused <i>E6</i> locus facilitating soybean adaptation into low latitude. Journal of Integrative Plant Biology, 2021, 63, 995-1003.	8.5	32
46	Loss of Function of the E1-Like-b Gene Associates With Early Flowering Under Long-Day Conditions in Soybean. Frontiers in Plant Science, 2018, 9, 1867.	3.6	31
47	Dual functions of GmTOE4a in the regulation of photoperiod-mediated flowering and plant morphology in soybean. Plant Molecular Biology, 2015, 88, 343-355.	3.9	29
48	Quantitative Trait Locus Mapping of Soybean Maturity Gene <i>E6</i> . Crop Science, 2017, 57, 2547-2554.	1.8	29
49	PPR20 Is Required for the cis-Splicing of Mitochondrial nad2 Intron 3 and Seed Development in Maize. Plant and Cell Physiology, 2020, 61, 370-380.	3.1	29
50	SUMO E3 Ligase SIZ1 stabilizes MYB75 to regulate anthocyanin accumulation under high light conditions in Arabidopsis. Plant Science, 2020, 292, 110355.	3.6	28
51	QTL mapping for flowering time in different latitude in soybean. Euphytica, 2015, 206, 725-736.	1.2	27
52	Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time. Crop Journal, 2021, 9, 767-776.	5.2	25
53	Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. ABIOTECH, 2021, 2, 156-169.	3.9	23
54	Modulation of nitrate-induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus. Molecular Plant, 2021, 14, 517-529.	8.3	22

#	Article	IF	Citations
55	Characterization and quantitative trait locus mapping of late-flowering from a Thai soybean cultivar introduced into a photoperiod-insensitive genetic background. PLoS ONE, 2019, 14, e0226116.	2.5	20
56	<i>CALCIUM-DEPENDENT PROTEIN KINASE38</i> regulates flowering time and common cutworm resistance in soybean. Plant Physiology, 2022, 190, 480-499.	4.8	20
57	A Global Analysis of the Polygalacturonase Gene Family in Soybean (Glycine max). PLoS ONE, 2016, 11, e0163012.	2.5	17
58	MS1 is essential for male fertility by regulating the microsporocyte cell plate expansion in soybean. Science China Life Sciences, 2021, 64, 1533-1545.	4.9	17
59	Rapid identification of consistent novel QTLs underlying long-juvenile trait in soybean by multiple genetic populations and genotyping-by-sequencing. Molecular Breeding, 2019, 39, 1.	2.1	16
60	Genome-wide association study for soybean mosaic virus SC3 resistance in soybean. Molecular Breeding, 2020, 40, 1.	2.1	13
61	Involvement of Lhcb6 and Lhcb5 in Photosynthesis Regulation in Physcomitrella patens Response to Abiotic Stress. International Journal of Molecular Sciences, 2019, 20, 3665.	4.1	12
62	Genome-Wide Analysis of DREB Genes Identifies a Novel Salt Tolerance Gene in Wild Soybean (Glycine) Tj ETQq	0 0 <u>9 rg</u> BT	Oyerlock 10
63	A Soybean Deletion Mutant That Moderates the Repression of Flowering by Cool Temperatures. Frontiers in Plant Science, 2020, 11, 429.	3.6	9
64	A polygalacturonase gene PG031 regulates seed coat permeability with a pleiotropic effect on seed weight in soybean. Theoretical and Applied Genetics, 2022, 135, 1603-1618.	3.6	9
65	QTLMiner: QTL database curation by mining tables in literature. Bioinformatics, 2015, 31, 1689-1691.	4.1	8
66	InDel marker detection by integration of multiple softwares using machine learning techniques. BMC Bioinformatics, 2016, 17, 548.	2.6	8
67	A Functional Alternative Oxidase Modulates Plant Salt Tolerance in Physcomitrella patens. Plant and Cell Physiology, 2019, 60, 1829-1841.	3.1	8
68	Molecular breeding of a high oleic acid soybean line by integrating natural variations. Molecular Breeding, 2020, 40, 1.	2.1	8
69	The legume-specific transcription factor E1 controls leaf morphology in soybean. BMC Plant Biology, 2021, 21, 531.	3.6	8
70	Structural features of the aleurone layer of the seed coat associated with imbibition injury in soybean. Breeding Science, 2019, 69, 364-370.	1.9	7
71	Identification of major QTLs for flowering and maturity in soybean by genotyping-by-sequencing analysis. Molecular Breeding, 2020, 40, 1 .	2.1	6
72	Cotranscriptional and Posttranscriptional Features of the Transcriptome in Soybean Shoot Apex and Leaf. Frontiers in Plant Science, 2021, 12, 649634.	3.6	6

#	Article	IF	CITATIONS
73	Quantitative trait loci mapping of Meloidogyne incognita and M.Âhapla resistance in a recombinant inbred line population of soybean. Nematology, 2018, 20, 525-537.	0.6	4
74	Natural variation of the Dt2 promoter controls plant height and node number in semi-determinant soybean. Molecular Breeding, 2021, 41, 1.	2.1	4
75	Genome-Wide DNA Methylation Analysis of Soybean Curled-Cotyledons Mutant and Functional Evaluation of a Homeodomain-Leucine Zipper (HD-Zip) I Gene GmHDZ20. Frontiers in Plant Science, 2020, 11, 593999.	3.6	4
76	Regulation of flowering and maturation in soybean. Advances in Botanical Research, 2022, , .	1.1	4
77	PopGeV: a web-based large-scale population genome browser: Fig. 1 Bioinformatics, 2015, 31, 3048-3050.	4.1	3
78	A flowering time locus dependent on E2 in soybean. Molecular Breeding, 2021, 41, 1.	2.1	3
79	Current overview on the genetic basis of key genes involved in soybean domestication. ABIOTECH, 2022, 3, 126-139.	3.9	3
80	Oil crops: From the classical traits to genetic improvement. Journal of Integrative Plant Biology, 2021, 63, 979-980.	8.5	2
81	Rapid excavating a FLOWERING LOCUS T-regulator NF-YA using genotyping-by-sequencing. Molecular Breeding, 2021, 41, 1.	2.1	0
82	Title is missing!. , 2019, 14, e0226116.		0
83	Title is missing!. , 2019, 14, e0226116.		0
84	Title is missing!. , 2019, 14, e0226116.		0
85	Title is missing!. , 2019, 14, e0226116.		O