Paul E Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8851949/publications.pdf

Version: 2024-02-01

		279798	168389
57	3,429	23	53
papers	citations	h-index	g-index
Γ0	Γ0	Γ0	2562
58	58	58	3563
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Selection for Phage Resistance Reduces Virulence of Shigella flexneri. Applied and Environmental Microbiology, 2022, 88, AEM0151421.	3.1	11
2	Decay and damage of therapeutic phage OMKO1 by environmental stressors. PLoS ONE, 2022, 17, e0263887.	2.5	14
3	Assembly and Annotation of Escherichia coli Bacteriophage U115. Microbiology Resource Announcements, 2022, 11, e0094921.	0.6	0
4	<i>Call for Special Issue Papers:</i> Phage/Host Combat: Phage Strategies for Taking Over the Host and Host Strategies for Defense. Phage, 2022, 3, 1-2.	1.7	0
5	Mitigation of evolved bacterial resistance to phage therapy. Current Opinion in Virology, 2022, 53, 101201.	5.4	27
6	Bacteriophage therapy for infections in CF. Pediatric Pulmonology, 2021, 56, S4-S9.	2.0	36
7	Complete Genome Sequence of Escherichia coli Bacteriophage U136B. Microbiology Resource Announcements, 2021, 10, .	0.6	1
8	Pandemic Policy in the Vaccine Era: The Long Haul Approach. BioScience, 2021, 71, 673-675.	4.9	1
9	Community context matters for bacteria-phage ecology and evolution. ISME Journal, 2021, 15, 3119-3128.	9.8	34
10	Evolution of Bacterial Cross-Resistance to Lytic Phages and Albicidin Antibiotic. Frontiers in Microbiology, 2021, 12, 658374.	3.5	14
11	Effects of historical coâ€infection on host shift abilities of exploitative and competitive viruses. Evolution; International Journal of Organic Evolution, 2021, 75, 1878-1888.	2.3	4
12	Advancing phage therapy through the lens of virus host-breadth and emergence potential. Advances in Virus Research, 2021, 111, 63-110.	2.1	7
13	Fighting microbial pathogens by integrating host ecosystem interactions and evolution. BioEssays, 2021, 43, 2000272.	2.5	5
14	Can we eradicate viral pathogens?. Journal of Evolutionary Biology, 2021, 34, 1851-1854.	1.7	0
15	Evolvability Costs of Niche Expansion. Trends in Genetics, 2020, 36, 14-23.	6.7	35
16	Broadscale phage therapy is unlikely to select for widespread evolution of bacterial resistance to virus infection. Virus Evolution, 2020, 6, veaa060.	4.9	14
17	Trading-off and trading-up in the world of bacteria–phage evolution. Current Biology, 2020, 30, R1120-R1124.	3.9	53
18	Phage steering of antibiotic-resistance evolution in the bacterial pathogen, Pseudomonas aeruginosa. Evolution, Medicine and Public Health, 2020, 2020, 148-157.	2.5	53

#	Article	IF	Citations
19	High-throughput discovery of phage receptors using transposon insertion sequencing of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18670-18679.	7.1	83
20	Prior evolution in stochastic versus constant temperatures affects RNA virus evolvability at a thermal extreme. Ecology and Evolution, 2020, 10, 5440-5450.	1.9	4
21	Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11207-11216.	7.1	159
22	Quantitative Models of Phage-Antibiotic Combination Therapy. MSystems, 2020, 5, .	3.8	73
23	The interplay between host community structure and pathogen lifeâ€history constraints in driving the evolution of hostâ€range shifts. Functional Ecology, 2019, 33, 2338-2353.	3.6	9
24	Publisher's Note: Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evolution, Medicine and Public Health, 2019, 2019, 35.	2.5	3
25	Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host and Microbe, 2019, 25, 219-232.	11.0	657
26	A48â€,Evolutionary history constrains adaptation in vesicular stomatitis virus. Virus Evolution, 2018, 4, .	4.9	0
27	Evolution of mutualism from parasitism in experimental virus populations. Evolution; International Journal of Organic Evolution, 2018, 72, 707-712.	2.3	35
28	Phage treatment of an aortic graft infected with <i>Pseudomonas aeruginosa </i> . Evolution, Medicine and Public Health, 2018, 2018, 60-66.	2.5	347
29	Parallel Evolution of Host-Attachment Proteins in Phage PP01 Populations Adapting to Escherichia coli O157:H7. Pharmaceuticals, 2018, 11, 60.	3.8	20
30	Chikungunya virus evolution following a large 3′UTR deletion results in host-specific molecular changes in protein-coding regions. Virus Evolution, 2018, 4, vey012.	4.9	24
31	Generalized Growth of Estuarine, Household and Clinical Isolates of Pseudomonas aeruginosa. Frontiers in Microbiology, 2018, 9, 305.	3.5	10
32	Dynamics of molecular evolution in RNA virus populations depend on sudden versus gradual environmental change. Evolution; International Journal of Organic Evolution, 2017, 71, 872-883.	2.3	26
33	Infection rate of <i> Aedes aegypti < /i > mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171506.</i>	2.6	55
34	Repeatable Population Dynamics among Vesicular Stomatitis Virus Lineages Evolved under High Co-infection. Frontiers in Microbiology, 2016, 7, 370.	3.5	14
35	Generalized selection to overcome innate immunity selects for host breadth in an RNA virus. Evolution; International Journal of Organic Evolution, 2016, 70, 270-281.	2.3	12
36	Reassortment in segmented RNA viruses: mechanisms and outcomes. Nature Reviews Microbiology, 2016, 14, 448-460.	28.6	259

#	Article	IF	Citations
37	Extending the lifetime of antibiotics: how can phage therapy help?. Future Microbiology, 2016, 11, 1105-1107.	2.0	11
38	Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 26717.	3.3	479
39	Evolution in spatially mixed host environments increases divergence for evolved fitness and intrapopulation genetic diversity in RNA viruses. Virus Evolution, 2016, 2, vev022.	4.9	12
40	Evolution of parasitism and mutualism between filamentous phage M13 and <i>Escherichia coli </i> PeerJ, 2016, 4, e2060.	2.0	30
41	Can oncology recapitulate paleontology? Lessons from species extinctions. Nature Reviews Clinical Oncology, 2015, 12, 273-285.	27.6	31
42	Rate of novel host invasion affects adaptability of evolving RNA virus lineages. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150801.	2.6	17
43	Genomic and Gene-Expression Comparisons among Phage-Resistant Type-IV Pilus Mutants of Pseudomonas syringae pathovar phaseolicola. PLoS ONE, 2015, 10, e0144514.	2.5	11
44	Antibiotic resistance correlates with transmission in plasmid evolution. Evolution; International Journal of Organic Evolution, 2014, 68, 3368-3380.	2.3	39
45	The evolution of life history trade-offs in viruses. Current Opinion in Virology, 2014, 8, 79-84.	5.4	69
46	STOCHASTIC TEMPERATURES IMPEDE RNA VIRUS ADAPTATION. Evolution; International Journal of Organic Evolution, 2013, 67, 969-979.	2.3	43
47	High-throughput analysis of growth differences among phage strains. Journal of Microbiological Methods, 2012, 88, 117-121.	1.6	19
48	Evolutionary genomics of host-use in bifurcating demes of RNA virus phi-6. BMC Evolutionary Biology, 2012, 12, 153.	3.2	7
49	Consequences of host adaptation for performance of vesicular stomatitis virus in novel thermal environments. Evolutionary Ecology, 2010, 24, 299-315.	1.2	16
50	ROLE OF EVOLVED HOST BREADTH IN THE INITIAL EMERGENCE OF AN RNA VIRUS. Evolution; International Journal of Organic Evolution, 2010, 64, 3273-3286.	2.3	49
51	Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus. Molecular Biology and Evolution, 2008, 25, 1138-1147.	8.9	82
52	Genetic Robustness and Adaptability of Viruses. Microbe Magazine, 2008, 3, 409-415.	0.4	2
53	DNA secretion and gene-level selection in bacteria. Microbiology (United Kingdom), 2006, 152, 2683-2688.	1.8	34
54	Phenotypic Plasticity in Bacterial Plasmids. Genetics, 2004, 167, 9-20.	2.9	37

PAUL E TURNER

#	Article	IF	CITATIONS
55	Searching for the advantages of virus sex. Origins of Life and Evolution of Biospheres, 2003, 33, 95-108.	1.9	21
56	Escape from Prisoner's Dilemma in RNA Phage Φ6. American Naturalist, 2003, 161, 497-505.	2.1	119
57	Cost of Host Radiation in an RNA Virus. Genetics, 2000, 156, 1465-1470.	2.9	201