Si-Tong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/885189/publications.pdf

Version: 2024-02-01

87843 95218 4,935 76 38 68 h-index citations g-index papers 77 77 77 3092 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Role of extracellular polymeric substance in determining the high aggregation ability ofÂanammox sludge. Water Research, 2015, 75, 51-62.	5.3	541
2	The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology, 2009, 100, 1548-1554.	4.8	249
3	Genome-Centered Metagenomics Analysis Reveals the Symbiotic Organisms Possessing Ability to Cross-Feed with Anammox Bacteria in Anammox Consortia. Environmental Science & Env	4.6	208
4	Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Microbiome, 2018, 6, 16.	4.9	208
5	Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials, 2021, 11, 1804.	1.9	192
6	Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor. Chemosphere, 2018, 203, 457-466.	4.2	164
7	Metabolomics Uncovers the Regulatory Pathway of Acyl-homoserine Lactones Based Quorum Sensing in Anammox Consortia. Environmental Science & Environmen	4.6	136
8	Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field. Journal of Biotechnology, 2008, 138, 96-102.	1.9	124
9	Microbial transcript and metabolome analysis uncover discrepant metabolic pathways in autotrophic and mixotrophic anammox consortia. Water Research, 2018, 128, 402-411.	5.3	121
10	Insight into the Aggregation Capacity of Anammox Consortia during Reactor Start-Up. Environmental Science & Environmental Scie	4.6	120
11	Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresource Technology, 2008, 99, 6817-6825.	4.8	117
12	Identification of the release and effects of AHLs in anammox culture for bacteria communication. Chemical Engineering Journal, 2015, 273, 184-191.	6.6	112
13	Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1. Bioresource Technology, 2014, 162, 80-88.	4.8	110
14	Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox. Chemosphere, 2007, 69, 776-784.	4.2	109
15	Impacts of organics on the microbial ecology of wastewater anammox processes: Recent advances and meta-analysis. Water Research, 2021, 191, 116817.	5.3	108
16	Comammox <i>Nitrospira</i> within the Yangtze River continuum: community, biogeography, and ecological drivers. ISME Journal, 2020, 14, 2488-2504.	4.4	106
17	A metabolomic view of how low nitrogen strength favors anammox biomass yield and nitrogen removal capability. Water Research, 2018, 143, 387-398.	5.3	98
18	Correspondence analysis of bio-refractory compounds degradation and microbiological community distribution in anaerobic filter for coking wastewater treatment. Chemical Engineering Journal, 2016, 304, 864-872.	6.6	96

#	Article	IF	CITATIONS
19	Metagenomic approaches to understanding bacterial communication during the anammox reactor start-up. Water Research, 2018, 136, 95-103.	5.3	94
20	Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor. Bioresource Technology, 2008, 99, 8273-8279.	4.8	89
21	Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment. Chemical Engineering Journal, 2012, 213, 338-345.	6.6	88
22	Effects of porous carrier size on biofilm development, microbial distribution and nitrogen removal in microaerobic bioreactors. Bioresource Technology, 2017, 234, 360-369.	4.8	87
23	Enhanced microbial metabolism in one stage partial nitritation-anammox system treating low strength wastewater by novel composite carrier. Water Research, 2019, 163, 114872.	5.3	80
24	Insight into c-di-GMP Regulation in Anammox Aggregation in Response to Alternating Feed Loadings. Environmental Science & Envi	4.6	74
25	Microbial community compositions in different functional zones of Carrousel oxidation ditch system for domestic wastewater treatment. AMB Express, 2017, 7, 40.	1.4	73
26	Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal. Bioresource Technology, 2008, 99, 2749-2756.	4.8	71
27	The influence of controlling factors on the start-up and operation for partial nitrification in membrane bioreactor. Bioresource Technology, 2009, 100, 1055-1060.	4.8	67
28	Discrepant gene functional potential and cross-feedings of anammox bacteria Ca. Jettenia caeni and Ca. Brocadia sinica in response to acetate. Water Research, 2019, 165, 114974.	5.3	67
29	Enhancement of anaerobic methanogenesis at a short hydraulic retention time via bioelectrochemical enrichment of hydrogenotrophic methanogens. Bioresource Technology, 2016, 218, 505-511.	4.8	66
30	Assessment of the positive effect of salinity on the nitrogen removal performance and microbial composition during the start-up of CANON process. Applied Microbiology and Biotechnology, 2008, 80, 339-48.	1.7	64
31	Molecular Characterization of Organics Removed by a Covalently Bound Inorganic–Organic Hybrid Coagulant for Advanced Treatment of Municipal Sewage. Environmental Science & Technology, 2018, 52, 12642-12648.	4.6	57
32	Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13188-13200.	4.0	54
33	Free ammonia pretreatment improves anaerobic methane generation from algae. Water Research, 2019, 162, 269-275.	5.3	54
34	Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world. ISME Journal, 2020, 14, 151-163.	4.4	54
35	Role of c-di-GMP in anammox aggregation and systematic analysis of its turnover protein in Candidatus Jettenia caeni. Water Research, 2017, 113, 181-190.	5.3	53
36	Metagenomic insights into functional traits variation and coupling effects on the anammox community during reactor start-up. Science of the Total Environment, 2019, 687, 50-60.	3.9	53

#	Article	IF	CITATIONS
37	Metabolic acclimation of anammox consortia to decreased temperature. Environment International, 2020, 143, 105915.	4.8	52
38	Identification of quorum sensing signal AHLs synthases in Candidatus Jettenia caeni and their roles in anammox activity. Chemosphere, 2019, 225, 608-617.	4.2	47
39	Mitigated membrane fouling of anammox membrane bioreactor by microbiological immobilization. Bioresource Technology, 2016, 201, 312-318.	4.8	39
40	Discrepant membrane fouling of partial nitrification and anammox membrane bioreactor operated at the same nitrogen loading rate. Bioresource Technology, 2016, 214, 729-736.	4.8	34
41	Anammox response to natural and anthropogenic impacts over the Yangtze River. Science of the Total Environment, 2019, 665, 171-180.	3.9	34
42	Free Ammonia Pretreatment To Improve Bio-hydrogen Production from Anaerobic Dark Fermentation of Microalgae. ACS Sustainable Chemistry and Engineering, 2019, 7, 1642-1647.	3.2	34
43	Enhance the treatment of low strength wastewater at low temperature with the coexistence system of AnAOB and heterotrophic bacteria: Performance and bacterial community. Science of the Total Environment, 2020, 714, 136799.	3.9	34
44	Metabolic insights into the enhanced nitrogen removal of anammox by montmorillonite at reduced temperature. Chemical Engineering Journal, 2021, 410, 128290.	6.6	34
45	Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules. Journal of Hazardous Materials, 2011, 185, 249-254.	6.5	33
46	Deciphering bacterial social traits via diffusible signal factor (DSF) -mediated public goods in an anammox community. Water Research, 2021, 191, 116802.	5.3	29
47	Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate. Applied Microbiology and Biotechnology, 2017, 101, 3821-3828.	1.7	25
48	Effects of Ca2+ on activity restoration of the damaged anammox consortium. Bioresource Technology, 2013, 143, 315-321.	4.8	24
49	Bio-Source of di-n-butyl phthalate production by filamentous fungi. Scientific Reports, 2016, 6, 19791.	1.6	24
50	Genome-centered omics insight into the competition and niche differentiation of Ca. Jettenia and Ca. Brocadia affiliated to anammox bacteria. Applied Microbiology and Biotechnology, 2019, 103, 8191-8202.	1.7	24
51	Role of cyclic diguanylate in affecting microbial community shifts at different pH during the operation of simultaneous partial nitrification, anammox and denitrification process. Science of the Total Environment, 2018, 637-638, 155-162.	3.9	23
52	Free Ammonia Pretreatment Improves Degradation of Secondary Sludge During Aerobic Digestion. ACS Sustainable Chemistry and Engineering, 2018, 6, 1105-1111.	3.2	21
53	Combined process of urea nitrogen removal in anaerobic Anammox co-culture reactor. Bioresource Technology, 2008, 99, 1722-1728.	4.8	19
54	Lyotropic liquid crystal behavior of carboxylated cellulose nanocrystals. Carbohydrate Polymers, 2017, 164, 364-369.	5.1	18

#	Article	IF	CITATIONS
55	Hot topics and application trends of the anammox biotechnology: a review by bibliometric analysis. SpringerPlus, 2014, 3, 220.	1.2	16
56	The starvation tolerance of anammox bacteria culture at $35 {\hat A}^{\circ} C$. Journal of Bioscience and Bioengineering, 2015, 120, 450-455.	1.1	16
57	Combination of complex adsorption and anammox for nitric oxide removal. Journal of Hazardous Materials, 2016, 312, 175-183.	6.5	16
58	The autofluorescence characteristics of bacterial intracellular and extracellular substances during the operation of anammox reactor. Scientific Reports, 2017, 7, 39289.	1.6	16
59	Competitive adsorption of heavy metals by anaerobic ammonium-oxidizing (anammox) consortia. Chemosphere, 2020, 258, 127289.	4.2	16
60	Dispersal limitation drives biogeographical patterns of anammox bacterial communities across the Yangtze River. Applied Microbiology and Biotechnology, 2020, 104, 5535-5546.	1.7	16
61	Bioelectrochemical partial-denitrification coupled with anammox for autotrophic nitrogen removal. Chemical Engineering Journal, 2022, 434, 134667.	6.6	16
62	Behavior detection and activity recovery of damaged anammox bacteria culture after accidental overheating. Chemical Engineering Journal, 2015, 259, 70-78.	6.6	15
63	Cell surface characterization and trace metal adsorptive properties of anaerobic ammonium-oxidizing (anammox) consortia. Chemosphere, 2019, 221, 11-20.	4.2	13
64	Response of amino acid metabolism to decreased temperatures in anammox consortia: Strong, efficient and flexible. Bioresource Technology, 2022, 352, 127099.	4.8	12
65	Extracellular polymeric substances extraction induced the increased purification performance of percoll density gradient centrifugation for anammox bacteria. Chemical Engineering Journal, 2016, 287, 529-536.	6.6	11
66	A novel bismuth hydroxide (Bi(OH) ₃) semiconductor with highly-efficient photocatalytic activity. Chemical Communications, 2022, 58, 8198-8201.	2.2	10
67	N-acyl-homoserine lactones (AHLs) in intertidal marsh: diversity and potential role in nitrogen cycling. Plant and Soil, 2020, 454, 103-119.	1.8	8
68	Metabolic patterns reveal enhanced anammox activity at low nitrogen conditions in the integrated lâ€ABR. Water Environment Research, 2021, 93, 1455-1465.	1.3	8
69	New Antifouling and Antibacterial Membrane Material for Highly Selective Removal of Nitrate and Phosphate. Industrial & Description (2020, 59, 12114-12122).	1.8	7
70	Cross-feeding among microalgae facilitates nitrogen recovery at low C/N. Environmental Research, 2022, 211, 113052.	3.7	7
71	Recovery of soluble chlorides from municipal solid waste incineration fly ash using evaporative crystallisation and flotation methods. Separation Science and Technology, 2022, 57, 2276-2286.	1.3	6
72	Photocatalytic Reduction of CO ₂ on a Bi ₂ Mo _{<i>x</i>} W _{1â€"<i>x</i>} O ₆ Solid Solution with Enhanced Activity. Inorganic Chemistry, 2022, 61, 9405-9412.	1.9	6

#	Article	IF	CITATIONS
73	Magnetic hybrid coagulant for rapid and efficient removal of nitrogen compounds from municipal wastewater and its mechanistic investigation. Chemical Engineering Journal, 2021, 417, 127990.	6.6	3
74	The Enrichment of Anammox Bacteria in Non-Woven Rotating Biological Contactor Reactor. , 2008, , .		2
75	Metagenomic Approaches to Explore the Quorum Sensing-Mediated Interactions Between Algae and Bacteria in Sequence Membrane Photo-Bioreactors. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851376.	2.0	2
76	Comparison of Different Carriers to Maintain a Stable Partial Nitrification Process for Low-Strength Wastewater Treatment. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851565.	2.0	1