
David A Tulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8851694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Influence of Maternal Aerobic Exercise, Blood DHA and EPA Concentrations on Maternal Lipid Profiles. International Journal of Environmental Research and Public Health, 2022, 19, 3550.	2.6	9
2	Proteaseâ€Activated Receptorâ€2 Differentially Regulates Vascular Smooth Muscle Cell Proliferation in Cyclic AMPâ€Dependent Protein Kinase/Phosphoinositide 3â€Kinaseâ€Dependent Manner. FASEB Journal, 2022, 36, .	0.5	0
3	Maternal Aerobic Exercise, but Not Blood Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations, during Pregnancy Influence Infant Body Composition. International Journal of Environmental Research and Public Health, 2022, 19, 8293.	2.6	4
4	Increased AMP deaminase activity decreases ATP content and slows protein degradation in cultured skeletal muscle. Metabolism: Clinical and Experimental, 2020, 108, 154257.	3.4	17
5	Cyclic Nucleotide-Directed Protein Kinases in Cardiovascular Inflammation and Growth. Journal of Cardiovascular Development and Disease, 2018, 5, 6.	1.6	6
6	Abstract 549: Interleukin-6 Trans-Signaling in Acute Myocardial Infarction in Male BALB/c Mice. Circulation Research, 2018, 123, .	4.5	0
7	Making the cut: Innovative methods for optimizing perfusionâ€based migration assays. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 270-280.	1.5	0
8	Novel protein kinase targets in vascular smooth muscle therapeutics. Current Opinion in Pharmacology, 2017, 33, 12-16.	3.5	3
9	Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation. Cellular Signalling, 2016, 28, 1364-1379.	3.6	20
10	Abstract 556: The Soluble Guanylyl Cyclase Activator Bay 60-2770 Inhibits Arterial Smooth Muscle Cell Migration in Protein Kinase G-dependent Manner. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
11	Vascular Smooth Muscle as a Therapeutic Target in Disease Pathology. , 2015, , .		1
12	AMP-activated protein kinase inhibits transforming growth factor-Î ² -mediated vascular smooth muscle cell growth: implications for a Smad-3-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1251-H1259.	3.2	16
13	Connexins and intercellular communication in arterial growth and remodeling. Archives of Physiology, 2015, 2, 1.	0.0	2
14	Exchange protein activated by cAMP (EPAC) controls migration of vascular smooth muscle cells in concentration- and timedependent manner. Archives of Physiology, 2015, 2, 2.	0.0	5
15	Protein Kinase G and VASP in the Control of Vascular Smooth Muscle Cell Migration. FASEB Journal, 2015, 29, 804.5.	0.5	0
16	AMP-activated protein kinase inhibits vascular smooth muscle cell proliferation and migration and vascular remodeling following injury. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H369-H381.	3.2	67
17	The Dopamine D3 Receptor Knockout Mouse Mimics Aging-Related Changes in Autonomic Function and Cardiac Fibrosis. PLoS ONE, 2013, 8, e74116.	2.5	23
18	Experimental Rat and Mouse Carotid Artery Surgery: Injury and Remodeling Studies. ISRN Minimally Invasive Surgery, 2013, 2013, 1-10.	0.3	27

DAVID A TULIS

#	Article	IF	CITATIONS
19	Inhibition of Vascular Smooth Muscle Growth by the Soluble Guanylyl Cyclase Activator BAY 60–2770. FASEB Journal, 2013, 27, 1139.3.	0.5	0
20	Abstract 297: Cyclic GMP Reduces Vascular Smooth Muscle Migration through Inhibition of TGF-ß1/Smad Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
21	Control of Vascular Smooth Muscle Cell Growth by Connexin 43. Frontiers in Physiology, 2012, 3, 220.	2.8	23
22	Phosphodiesterases Regulate BAY 41-2272-Induced VASP Phosphorylation in Vascular Smooth Muscle Cells. Frontiers in Pharmacology, 2012, 3, 10.	3.5	16
23	Bilirubin Inhibits Neointima Formation and Vascular Smooth Muscle Cell Proliferation and Migration. Frontiers in Pharmacology, 2012, 3, 48.	3.5	37
24	Inhibition of vascular smooth muscle growth via signaling crosstalk between AMP-activated protein kinase Frontiers in Physiology, 2012, 3, 409.	2.8	30
25	The dopamine D3 receptor knockout mouse models agingâ€related changes in hypertension and cardiac fibrosis. FASEB Journal, 2012, 26, 1092.11.	0.5	0
26	DINITROBENZENES STIMULATE ELECTRON FLUX WITHIN NEURONAL NITRIC OXIDE SYNTHASE IN THE ABSENCE OF CALMODULIN. International Journal of Biomedical Research, 2011, 2, 499-507.	0.1	0
27	The Soluble Guanylate Cyclase Stimulator BAY 41-2272 Inhibits Vascular Smooth Muscle Growth through the cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase Pathways. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 394-402.	2.5	45
28	BAY 41â€⊋272 increases VASP phosphorylation via increases in both cAMP and cGMP in rat primary VSMCs. FASEB Journal, 2011, 25, 1008.4.	0.5	0
29	Differential regulation of vascular growth through cGMP/PKâ€G/PKâ€A signaling. FASEB Journal, 2011, 25, 1026.30.	0.5	0
30	BAY 41â€⊋272 reduces vascular smooth muscle cell growth via PKâ€G & PKâ€A signals. FASEB Journal, 2010, 24, 603.2.	0.5	0
31	YC-1 Stimulates the Expression of Gaseous Monoxide-Generating Enzymes in Vascular Smooth Muscle Cells. Molecular Pharmacology, 2009, 75, 208-217.	2.3	18
32	Arginase Promotes Neointima Formation in Rat Injured Carotid Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 488-494.	2.4	59
33	The Cyclic GMP Modulators YC-1 and Zaprinast Reduce Vessel Remodeling Through Antiproliferative and Proapoptotic Effects. Journal of Cardiovascular Pharmacology and Therapeutics, 2009, 14, 116-124.	2.0	9
34	Antigrowth Properties of BAY 41-2272 in Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2009, 53, 121-131.	1.9	19
35	Novel Therapies for Cyclic GMP Control of Vascular Smooth Muscle Growth. American Journal of Therapeutics, 2008, 15, 551-564.	0.9	17
36	YCâ€l stimulates heme oxygenaseâ€l gene expression in vascular smooth muscle cells. FASEB Journal, 2008, 22, 749.3.	0.5	0

DAVID A TULIS

#	Article	lF	CITATIONS
37	Pharmacologic Modulators of Soluble Guanylate Cyclase/Cyclic Guanosine Monophosphate in the Vascular System - From Bench Top to Bedside. Current Vascular Pharmacology, 2007, 5, 1-14.	1.7	2
38	Endocannabinoid Regulation of Matrix Metalloproteinases: Implications in Ischemic Stroke. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2007, 5, 311-318.	1.0	6
39	Rat Carotid Artery Balloon Injury Model. Methods in Molecular Medicine, 2007, 139, 1-30.	0.8	101
40	Histological and Morphometric Analyses for Rat Carotid Balloon Injury Model. Methods in Molecular Medicine, 2007, 139, 31-66.	0.8	25
41	Pharmacologic Modulators of Soluble Guanylate Cyclase/Cyclic Guanosine Monophosphate in the Vascular System - From Bench Top to Bedside. Current Vascular Pharmacology, 2007, 5, 1-14.	1.7	2
42	Pharmacologic modulators of soluble guanylate cyclase/cyclic guanosine monophosphate in the vascular system - from bench top to bedside. Current Vascular Pharmacology, 2007, 5, 1-14.	1.7	14
43	Methods for Identifying Cardiovascular Agents: A Review. Recent Patents on Cardiovascular Drug Discovery, 2006, 1, 47-56.	1.5	7
44	Curcumin Inhibits Platelet-Derived Growth Factor–Stimulated Vascular Smooth Muscle Cell Function and Injury-Induced Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 85-90.	2.4	128
45	Nitric oxide-generating hydrogels inhibit neointima formation. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 659-672.	3.5	49
46	Salutary Properties of YC-1 in the Cardiovascular and Hematological Systems. Current Medicinal Chemistry Cardiovascular and Hematological Agents, 2004, 2, 343-359.	1.7	17
47	Adenoviral Gene Transfer of Fortilin Attenuates Neointima Formation Through Suppression of Vascular Smooth Muscle Cell Proliferation and Migration. Circulation, 2003, 107, 98-105.	1.6	31
48	Steroid Receptor Coactivator-3 Is Required for Inhibition of Neointima Formation by Estrogen. Circulation, 2002, 105, 2653-2659.	1.6	78
49	YC-1-Mediated Vascular Protection through Inhibition of Smooth Muscle Cell Proliferation and Platelet Function. Biochemical and Biophysical Research Communications, 2002, 291, 1014-1021.	2.1	55
50	Heme oxygenase-1 attenuates vascular remodeling following balloon injury in rat carotid arteries. Atherosclerosis, 2001, 155, 113-122.	0.8	138
51	Adenovirus-Mediated Heme Oxygenase-1 Gene Delivery Inhibits Injury-Induced Vascular Neointima Formation. Circulation, 2001, 104, 2710-2715.	1.6	164
52	YC-1, a Benzyl Indazole Derivative, Stimulates Vascular cGMP and Inhibits Neointima Formation. Biochemical and Biophysical Research Communications, 2000, 279, 646-652.	2.1	47
53	Medial and Endothelial Platelet-Derived Growth Factor A Chain Expression Is Regulated by in vivo Exposure to Elevated Flow. Journal of Vascular Research, 1998, 35, 413-420.	1.4	14
54	Flow-induced arterial remodeling in rat mesenteric vasculature. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H874-H882.	3.2	54