Karan Mitra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8851436/publications.pdf Version: 2024-02-01

Κλάλνι Μίταλ

#	Article	IF	CITATIONS
1	AutoDiagn: An Automated Real-Time Diagnosis Framework for Big Data Systems. IEEE Transactions on Computers, 2022, 71, 1035-1048.	3.4	7
2	QoE in IoT: a vision, survey and future directions. Discover Internet of Things, 2021, 1, 1.	4.8	60
3	Toward Distributed, Global, Deep Learning Using IoT Devices. IEEE Internet Computing, 2021, 25, 6-12.	3.3	9
4	Anomaly Detection for Discovering Performance Degradation in Cellular IoT Services. , 2021, , .		1
5	Augmented Reality-Assisted Healthcare System for Caregivers in Smart Regions. , 2021, , .		4
6	Defining Quality of Experience for the Internet of Things. IT Professional, 2020, 22, 62-70.	1.5	12
7	Modeling Quality of IoT Experience in Autonomous Vehicles. IEEE Internet of Things Journal, 2020, 7, 3833-3849.	8.7	34
8	The Integration of Scheduling, Monitoring, and SLA in Cyber Physical Systems. Scalable Computing and Communications, 2020, , 237-254.	0.5	0
9	Context-Aware IoT-Enabled Cyber-Physical Systems: A Vision and Future Directions. Scalable Computing and Communications, 2020, , 1-16.	0.5	2
10	Category Preferred Canopy–K-means based Collaborative Filtering algorithm. Future Generation Computer Systems, 2019, 93, 1046-1054.	7.5	28
11	Cyber-physical application monitoring across multiple clouds. Computers and Electrical Engineering, 2019, 77, 314-324.	4.8	15
12	Performance evaluation of FIWARE: A cloud-based IoT platform for smart cities. Journal of Parallel and Distributed Computing, 2019, 132, 250-261.	4.1	72
13	CAVisAP: Context-Aware Visualization of Outdoor Air Pollution with IoT Platforms. , 2019, , .		7
14	SmartMonit: Real-Time Big Data Monitoring System. , 2019, , .		5
15	Implementation of a real-time network traffic monitoring service with network functions virtualization. Future Generation Computer Systems, 2019, 93, 687-701.	7.5	25
16	Cross-Layer Multi-Cloud Real-Time Application QoS Monitoring and Benchmarking As-a-Service Framework. IEEE Transactions on Cloud Computing, 2019, 7, 48-61.	4.4	29
17	Special issue on Big Data and Cloud of Things (CoT). Software - Practice and Experience, 2017, 47, 345-347.	3.6	0
18	Opportunistic Data Collection for IoT-Based Indoor Air Quality Monitoring. Lecture Notes in Computer Science, 2017, , 53-65.	1.3	1

#	Article	IF	CITATIONS
19	DisCPAQ: Distributed Context Acquisition andÂReasoning for Personalized Indoor Air Quality Monitoring in IoT-Based Systems. Lecture Notes in Computer Science, 2017, , 75-86.	1.3	2
20	ALPINE: A Bayesian System for Cloud Performance Diagnosis and Prediction. , 2017, , .		3
21	Remote health care cyberâ€physical system: quality of service (QoS) challenges and opportunities. IET Cyber-Physical Systems: Theory and Applications, 2016, 1, 40-48.	3.3	58
22	A Bayesian System for Cloud Performance Diagnosis and Prediction. , 2016, , .		1
23	Monitoring Internet of Things Application Ecosystems for Failure. IT Professional, 2016, 18, 8-11.	1.5	18
24	BayesForSG. , 2016, , .		4
25	Orchestrating Quality of Service in the Cloud of Things Ecosystem. , 2015, , .		3
26	IReHMo: An efficient IoT-based remote health monitoring system for smart regions. , 2015, , .		30
27	M ² C ² : A mobility management system for mobile cloud computing. , 2015, , .		16
28	An Overview of Cloud Based Content Delivery Networks: Research Dimensions and State-of-the-Art. Lecture Notes in Computer Science, 2015, , 131-158.	1.3	39
29	Context-Aware QoE Modelling, Measurement, and Prediction in Mobile Computing Systems. IEEE Transactions on Mobile Computing, 2015, 14, 920-936.	5.8	103
30	An overview of the commercial cloud monitoring tools: research dimensions, design issues, and state-of-the-art. Computing (Vienna/New York), 2015, 97, 357-377.	4.8	112
31	CloudSimDisk: Energy-Aware Storage Simulation in CloudSim. , 2015, , .		19
32	CLAMS: Cross-layer Multi-cloud Application Monitoring-as-a-Service Framework. , 2014, , .		20
33	A Mobile Cloud Computing System for Emergency Management. IEEE Cloud Computing, 2014, 1, 30-38.	3.9	20
34	Real-Time QoS Monitoring for Cloud-Based Big Data Analytics Applications in Mobile Environments. , 2014, , .		8
35	Towards understanding the runtime configuration management of do-it-yourself content delivery network applications over public clouds. Future Generation Computer Systems, 2014, 37, 297-308.	7.5	6
36	MediaWise cloud content orchestrator. Journal of Internet Services and Applications, 2013, 4, .	2.1	16

Karan Mitra

Karan Mitra

#	Article	IF	CITATIONS
37	QoE estimation and prediction using hidden Markov models in heterogeneous access networks. , 2012, , .		5
38	Cloud monitoring for optimizing the QoS of hosted applications. , 2012, , .		32
39	Performance evaluation of a decision-theoretic approach for quality of experience measurement in mobile and pervasive computing scenarios. , 2012, , .		1
40	Do-It-Yourself Content Delivery Network Orchestrator. Lecture Notes in Computer Science, 2012, , 789-791.	1.3	2
41	A probabilistic context-aware approach for quality of experience measurement in pervasive systems. , 2011, , .		12
42	A decision-theoretic approach for quality-of-experience measurement and prediction. , 2011, , .		13
43	Dynamic Bayesian Networks for Sequential Quality of Experience Modelling and Measurement. Lecture Notes in Computer Science, 2011, , 135-146.	1.3	11
44	PRONET: Proactive context-aware support for mobility in heterogeneous access networks. , 2009, , .		2
45	Context-aware application mobility support in pervasive computing environments. , 2009, , .		11