Paola Peluso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8851256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homochiral metal–organic frameworks and their application in chromatography enantioseparations. Journal of Chromatography A, 2014, 1363, 11-26.	3.7	79
2	Noncovalent interactions in high-performance liquid chromatography enantioseparations on polysaccharide-based chiral selectors. Journal of Chromatography A, 2020, 1623, 461202.	3.7	55
3	Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: Structures, features, application, and molecular modeling. Electrophoresis, 2021, 42, 1676-1708.	2.4	52
4	Selective Mono- or Dialkoxylation of 2,4,6-Trichloro-1,3,5-triazine in Solid-Liquid Phase Transfer Conditions. Synthetic Communications, 1994, 24, 2153-2158.	2.1	40
5	Insights into halogen bond-driven enantioseparations. Journal of Chromatography A, 2016, 1467, 228-238.	3.7	38
6	Recent studies of docking and molecular dynamics simulation for liquidâ€phase enantioseparations. Electrophoresis, 2019, 40, 1881-1896.	2.4	37
7	Insights into the impact of shape and electronic properties on the enantioseparation of polyhalogenated 4,4′-bipyridines on polysaccharide-type selectors. Evidence of stereoselective halogen bonding interactions. Journal of Chromatography A, 2014, 1345, 182-192.	3.7	36
8	Liquid Chromatography Enantioseparations of Halogenated Compounds on Polysaccharideâ€Based Chiral Stationary Phases: Role of Halogen Substituents in Molecular Recognition. Chirality, 2015, 27, 667-684.	2.6	36
9	Polysaccharideâ€based chiral stationary phases as halogen bond acceptors: A novel strategy for detection of stereoselective Ïfâ€hole bonds in solution. Journal of Separation Science, 2018, 41, 1247-1256.	2.5	34
10	Halogen bond in high-performance liquid chromatography enantioseparations: Description, features and modelling. Journal of Chromatography A, 2018, 1563, 71-81.	3.7	32
11	anti-Selective Heck-type cyclotrimerization of polycyclic bromoalkenes. Tetrahedron Letters, 2001, 42, 3515-3518.	1.4	31
12	Disubstituted Ferrocenyl Iodo- and Chalcogenoalkynes as Chiral Halogen and Chalcogen Bond Donors. Organometallics, 2020, 39, 3936-3950.	2.3	27
13	Stereochemistry of the cyclotrimerisation of enantiopure polycyclic bromostannylalkenes: Mechanistic considerations on the coupling of alkenyl stannanes by copper(II) nitrate. Tetrahedron Letters, 1999, 40, 8185-8188.	1.4	26
14	High-performance liquid chromatography enantioseparation of atropisomeric 4,4′-bipyridines on polysaccharide-type chiral stationary phases: Impact of substituents and electronic properties. Journal of Chromatography A, 2012, 1251, 91-100.	3.7	26
15	Chiral Chalcogen Bond Donors Based on the 4,4′-Bipyridine Scaffold. Molecules, 2019, 24, 4484.	3.8	26
16	The molecular bases of chiral recognition in 2-(benzylsulfinyl)benzamide enantioseparation. Analytica Chimica Acta, 2021, 1141, 194-205.	5.4	26
17	Synthesis, Resolution, and Absolute Configuration of Chiral 4,4′-Bipyridines. Journal of Organic Chemistry, 2012, 77, 2579-2583.	3.2	23
18	Halogen bond in separation science: A critical analysis across experimental and theoretical results. Journal of Chromatography A, 2020, 1616, 460788.	3.7	23

Paola Peluso

#	Article	IF	CITATIONS
19	1,3,5-Triazine multiselector systems: New tools for chiral discrimination. Chirality, 1997, 9, 113-121.	2.6	22
20	Enantioseparation of fluorinated 3-arylthio-4,4'-bipyridines: Insights into chalcogen and ï€-hole bonds in high-performance liquid chromatography. Journal of Chromatography A, 2018, 1567, 119-129.	3.7	22
21	Chiral Hexahalogenated 4,4′-Bipyridines. Journal of Organic Chemistry, 2016, 81, 4576-4587.	3.2	21
22	Enantiomeric Discrimination in a Reiterative Domino Coupling Process: Cul-mediated Syn Cyclotrimerization of Racemic Polycyclic Trimethylstannyl Bromonorbornadienes This work was funded by MURST (Rome) within the national project "Stereoselezione in Sintesi Organica. Metodologie e Applicazioniâ€. Angewandte Chemie - International Edition, 2001, 40, 4086.	13.8	20
23	Recent trends and applications in liquidâ€phase chromatography enantioseparation of atropisomers. Electrophoresis, 2017, 38, 1830-1850.	2.4	20
24	Comparative enantioseparation of chiral 4,4'-bipyridine derivatives on coated and immobilized amylose-based chiral stationary phases. Journal of Chromatography A, 2020, 1625, 461303.	3.7	20
25	Comparative HPLC Enantioseparation of Thirty‣ix Aromatic Compounds on Four Columns of the Lux® Series: Impact of Substituents, Shapes and Electronic Properties. Chirality, 2013, 25, 709-718.	2.6	19
26	Optimization of the HPLC enantioseparation of 3,3′-dibromo-5,5′-disubstituted-4,4′-bipyridines using immobilized polysaccharide-based chiral stationary phases. Journal of Separation Science, 2013, 36, 2993-3003.	2.5	19
27	Enantioselective synthesis of polycyclic ketones by desymmetrisation of bis(phenylsulfonyl)alkenes with chiral alcoholates. Control of the absolute configuration by a simple modification of the chiral auxiliary. Tetrahedron Letters, 1999, 40, 8705-8709.	1.4	17
28	Enantioseparation of 5,5′-Dibromo-2,2′-dichloro-3-selanyl-4,4′-bipyridines on Polysaccharide-Based Chiral Stationary Phases: Exploring Chalcogen Bonds in Liquid-Phase Chromatography. Molecules, 2021, 26, 221.	3.8	17
29	Separation of tetrahydrozoline enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of chiral recognition mechanisms. Journal of Chromatography A, 2021, 1643, 462084.	3.7	16
30	Selective Amination of Cyanuric Chloride in the Presence of 18-Crown-6. European Journal of Organic Chemistry, 2002, 2002, 1551-1555.	2.4	15
31	Lithiation of Prochiral 2,2′-Dichloro-5,5′-dibromo-4,4′-bipyridine as a Tool for the Synthesis of Chiral Polyhalogenated 4,4′-Bipyridines. Journal of Organic Chemistry, 2013, 78, 7683-7689.	3.2	15
32	Factors Impacting σ- and π-Hole Regions as Revealed by the Electrostatic Potential and Its Source Function Reconstruction: The Case of 4,4′-Bipyridine Derivatives. Molecules, 2020, 25, 4409.	3.8	15
33	Rational Design, Synthesis, Characterization and Evaluation of Iodinated 4,4′-Bipyridines as New Transthyretin Fibrillogenesis Inhibitors. Molecules, 2020, 25, 2213.	3.8	15
34	High-Performance Liquid Chromatographic Enantioseparation of Atropisomeric Biphenyls on Seven Chiral Stationary Phases. Current Organic Chemistry, 2011, 15, 1208-1229.	1.6	15
35	Rhodium catalyzed hydroformylation of 2-phenylsulfonylbicyclo[2.2.1] alkenes: effect of the phenylsulfonyl group. Tetrahedron Letters, 2006, 47, 2569-2572.	1.4	13
36	Highâ€performance liquid chromatography enantioseparation of polyhalogenated 4,4′â€bipyridines on polysaccharideâ€based chiral stationary phases under multimodal elution. Journal of Separation Science, 2014, 37, 2481-2489.	2.5	13

Paola Peluso

#	Article	IF	CITATIONS
37	Silver(<scp>i</scp>) coordination polymers with 3,3′,5,5′-tetrasubstituted 4,4′-bipyridine ligands: towards new porous chiral materials. RSC Advances, 2017, 7, 7358-7367.	3.6	13
38	Li+ and Na+ switch of enantioselectivity in the desymmetrisation of polycyclic bis(phenylsulfonyl)alkenes by chiral alcohols. Tetrahedron Letters, 2000, 41, 7263-7266.	1.4	12
39	Observations on the alkylation of \hat{l}^2 -acetalic carbanions: monoalkylation versus dialkylation and elimination. Tetrahedron, 2001, 57, 4461-4465.	1.9	12
40	Chiral Ferrocenylâ^'lodotriazoles and â^'lodotriazoliums as Halogen Bond Donors. Synthesis, Solid State Analysis and Catalytic Properties European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	12
41	Synthesis of 2-Mono- and 2,3-Disubstituted Polycyclic Alkenes. European Journal of Organic Chemistry, 2002, 2002, 4024-4031.	2.4	11
42	Complexation of daclatasvir by single isomer methylated β-cyclodextrins studied by capillary electrophoresis, NMR spectroscopy and mass spectrometry. Carbohydrate Polymers, 2021, 273, 118486.	10.2	11
43	Synthesis and Enantiomeric Separation of a Novel Spiroketal Derivative: A Potent Human Telomerase Inhibitor with High in Vitro Anticancer Activity. Journal of Medicinal Chemistry, 2016, 59, 9140-9149.	6.4	9
44	Enantioseparations of polyhalogenated 4,4'â€bipyridines on polysaccharideâ€based chiral stationary phases and molecular dynamics simulations of selector–selectand interactions. Electrophoresis, 2021, 42, 1853-1863.	2.4	9
45	IMPROVED SELECTIVE SYNTHESIS OF (Z)- AND (E)-1,2-BIS(PHENYLSULFONYL)-CHLOROETHYLENE. Synthetic Communications, 2001, 31, 27-32.	2.1	7
46	High performance liquid chromatographic enantioseparation of chiral bridged polycyclic compounds on chiralcel ODâ€H and chiralpak OT(+). Chirality, 2009, 21, 507-518.	2.6	7
47	Comparative enantioseparation of planar chiral ferrocenes on polysaccharideâ€based chiral stationary phases. Chirality, 2022, , .	2.6	7
48	Exploring interaction modes between polysaccharide-based selectors and biologically active 4,4′-bipyridines by experimental and computational analysis. Journal of Chromatography Open, 2022, 2, 100030.	2.2	7
49	Unravelling functions of halogen substituents in the enantioseparation of halogenated planar chiral ferrocenes on polysaccharide-based chiral stationary phases: experimental and electrostatic potential analyses. Journal of Chromatography A, 2022, 1673, 463097.	3.7	7
50	Role of Copper in the Stereoselective Metal-Promoted Cyclotrimerisation of Polycyclic Alkenes. European Journal of Organic Chemistry, 2002, 2002, 4032-4036.	2.4	6
51	Convenient Access to Functionalized Non-Symmetrical Atropisomeric 4,4′-Bipyridines. Compounds, 2021, 1, 58-74.	1.9	5
52	Conversion of Î ³ -substituted bicyclo[2.2.1] (Z)-vinylsulfones to the corresponding (E)-allylsulfones. Tetrahedron Letters, 2006, 47, 2253-2256.	1.4	4
53	Desymmetrization of meso 7-aza-2,3-bis(phenylsulfonyl) bicyclo[2.2.1]hept-2-ene: a re-examination. Kinetic resolution of racemic 3-arylsulfonyl-7-aza-2-bromobicyclo[2.2.1]hepta-2,5-dienes. Tetrahedron Letters, 2006, 47, 4015-4018.	1.4	4
54	Channels with ordered water and bipyridine molecules in the porous coordination polymer {[Cu(SiF6)(C10H8N2)2]·2C10N2H8·5H2O}n. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1654-1658.	0.5	1

#	Article	IF	CITATIONS
55	Bridged Benzocyclotrimers: Concepts, Synthesis, and Applications. Current Organic Chemistry, 2021, 25, 2912-2937.	1.6	1
56	Crystal structure of 2β,3β-bis(phenylsulfonyl)-2a-chlorobicyclo[2.2.1]hepta-5-ene, C7H7(SO2C6H5)2Cl. Zeitschrift Fur Kristallographie - New Crystal Structures, 2000, 215, 33-34.	0.3	0
57	Crystal structure of 3î±,4î±-4',5'-diphenyl-3-(phenylsulfonyl)- 1R-[1î±,2(4'R*,5'R*)-spiro]bicyclo[2.2.1]hept-5-ene-2,2'[1,3]dioxolane, [(C6H5SO2)C7H7][C2H2O2(Zeitschrift Fur Kristallographie - New Crystal Structures, 2000, 215, 231-232.	C 6 H35)2].	Ο
58	Synthesis of "Click BOX―ligands and preliminary results on their application in the asymmetric copper catalysed Henry reaction of o-methoxybenzaldehyde. Results in Chemistry, 2021, 3, 100122.	2.0	0