
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8851141/publications.pdf Version: 2024-02-01

LULIE D COLOMB

#	Article	IF	CITATIONS
1	Visual Distraction Disrupts Category-tuned Attentional Filters in Ventral Visual Cortex. Journal of Cognitive Neuroscience, 2022, 34, 1521-1533.	1.1	2
2	Statistical learning as a reference point for memory distortions: Swap and shift errors. Attention, Perception, and Psychophysics, 2021, 83, 1652-1672.	0.7	3
3	Neural Representations of Covert Attention across Saccades: Comparing Pattern Similarity to Shifting and Holding Attention during Fixation. ENeuro, 2021, 8, ENEURO.0186-20.2021.	0.9	2
4	Visual working memory items drift apart due to active, not passive, maintenance Journal of Experimental Psychology: General, 2021, 150, 2506-2524.	1.5	14
5	Perceptual distraction causes visual memory encoding intrusions. Psychonomic Bulletin and Review, 2021, 28, 1592-1600.	1.4	3
6	Shifting expectations: Lapses in spatial attention are driven by anticipatory attentional shifts. Attention, Perception, and Psychophysics, 2021, 83, 2822-2842.	0.7	2
7	Does average size of an ensemble bias individual size representations during perception or working memory retention?. Journal of Vision, 2021, 21, 1922.	0.1	0
8	Independent time courses for feature-binding errors after attentional capture and disengagement. Journal of Vision, 2021, 21, 1937.	0.1	0
9	Distraction disrupts attentional filtering for visual working memory: Neural and behavioral evidence for the Filter Disruption Theory. Journal of Vision, 2021, 21, 1939.	0.1	1
10	Saccades disrupt attentional filtering for visual working memory. Journal of Vision, 2021, 21, 1928.	0.1	0
11	Investigating the Spatial Congruency Bias: The privileged role of location in visual processing is a product of development. Journal of Vision, 2021, 21, 1947.	0.1	0
12	Feature Avoidance: A Result of Probabilistic Attentional Guidance. Journal of Vision, 2021, 21, 1926.	0.1	0
13	Neural reconstructions of task-relevant and irrelevant features of attended objects. Journal of Vision, 2021, 21, 1931.	0.1	0
14	Visual Remapping. Annual Review of Vision Science, 2021, 7, 257-277.	2.3	14
15	The Binding Problem after an eye movement. Attention, Perception, and Psychophysics, 2020, 82, 168-180.	0.7	8
16	Revisiting mixture models of memory. Nature Human Behaviour, 2020, 4, 1098-1099.	6.2	1
17	The influence of spatial location on same-different judgments of facial identity and expression Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 1538-1552.	0.7	1
18	Perceptual distraction disrupts control over visual memory encoding. Journal of Vision, 2020, 20, 859.	0.1	0

JULIE D GOLOMB

#	Article	IF	CITATIONS
19	Feature-binding errors during saccadic remapping may affect perception of real-world objects. Journal of Vision, 2020, 20, 595.	0.1	0
20	Feature avoidance errors when learned spatial probabilities guide attention to a nontarget. Journal of Vision, 2020, 20, 808.	0.1	0
21	Working memory-driven attention towards a distractor does not interfere with target feature perception. Visual Cognition, 2019, 27, 714-731.	0.9	2
22	Object-Feature Binding Survives Dynamic Shifts of Spatial Attention. Psychological Science, 2019, 30, 343-361.	1.8	27
23	Category-selective areas in human visual cortex exhibit preferences for stimulus depth. NeuroImage, 2019, 196, 289-301.	2.1	8
24	Remapping locations and features across saccades: a dual-spotlight theory of attentional updating. Current Opinion in Psychology, 2019, 29, 211-218.	2.5	24
25	Attentional capture alters feature perception Journal of Experimental Psychology: Human Perception and Performance, 2019, 45, 1443-1454.	0.7	18
26	Neural representations of attention across saccades: More similar to shifting or to holding covert attention?. Journal of Vision, 2019, 19, 319c.	0.1	0
27	A Matter of Expectations: Lapses in Spatial Attention May Be Driven by Anticipatory Attentional Shifts. Journal of Vision, 2019, 19, 102b.	0.1	0
28	The dominance of spatial information in location judgments: A persistent congruency bias even amidst conflicting statistical regularities. Journal of Vision, 2019, 19, 31.	0.1	0
29	Relational Interactions between Visual Memory Representations Increase with Maintenance Duration. Journal of Vision, 2019, 19, 77a.	0.1	0
30	Neural reconstructions of attended object features using fMRI and EEG. Journal of Vision, 2019, 19, 269c.	0.1	0
31	Memory for retinotopic locations is more accurate than memory for spatiotopic locations, even for visually guided reaching. Psychonomic Bulletin and Review, 2018, 25, 1388-1398.	1.4	14
32	Target localization after saccades and at fixation: Nontargets both facilitate and bias responses. Visual Cognition, 2018, 26, 734-752.	0.9	3
33	Depth sensitivity of category-selective visual areas to preferred and non-preferred stimuli. Journal of Vision, 2018, 18, 401.	0.1	0
34	Statistical Regularities During Object Encoding Distort Long-term Memory. Journal of Vision, 2018, 18, 1309.	0.1	0
35	Errors without doubt: Stimulus-driven attentional capture leads to feature-binding errors but no loss in confidence. Journal of Vision, 2018, 18, 460.	0.1	0
36	Object-feature binding survives dynamic shifts of spatial attention. Journal of Vision, 2018, 18, 18.	0.1	2

#	Article	IF	CITATIONS
37	Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex. Journal of Vision, 2018, 18, 1241.	0.1	0
38	Remapping of object features: Implications of the two-stage theory of spatial remapping. Journal of Vision, 2018, 18, 1366.	0.1	0
39	Localizing visual targets across saccades: Do nontarget landmarks really help?. Journal of Vision, 2018, 18, 1287.	0.1	Ο
40	Differential patterns of 2D location versus depth decoding along the visual hierarchy. NeuroImage, 2017, 147, 507-516.	2.1	21
41	Binding object features to locations: Does the "spatial congruency bias―update with object movement?. Attention, Perception, and Psychophysics, 2017, 79, 1682-1694.	0.7	8
42	Object-location binding across a saccade: A retinotopic spatial congruency bias. Attention, Perception, and Psychophysics, 2017, 79, 765-781.	0.7	19
43	Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex. PLoS ONE, 2017, 12, e0189828.	1.1	31
44	2D location biases depth-from-disparity judgments but not vice versa. Visual Cognition, 2017, 25, 841-852.	0.9	2
45	The Influence of Ensemble Statistics and Focused Attention on Feature Perception. Journal of Vision, 2017, 17, 958.	0.1	1
46	Independent and overlapping neural representations of saccades, attention shifts, and reference frames. Journal of Vision, 2017, 17, 522.	0.1	0
47	"Depth-otopic" mapping of human visual cortex. Journal of Vision, 2017, 17, 586.	0.1	0
48	Attentional capture by working memory does not interfere with visual feature perception. Journal of Vision, 2017, 17, 956.	0.1	0
49	Dynamically tracking the neural signatures of visual attention across a saccade. Journal of Vision, 2017, 17, 880.	0.1	0
50	Memory for retinotopic locations is more accurate than memory for spatiotopic locations, even when intending to reach Journal of Vision, 2017, 17, 1235.	0.1	0
51	No Evidence for Automatic Remapping of Stimulus Features or Location Found with fMRI. Frontiers in Systems Neuroscience, 2016, 10, 53.	1.2	17
52	A Neural Basis of Facial Action Recognition in Humans. Journal of Neuroscience, 2016, 36, 4434-4442.	1.7	53
53	Feature-location binding in 3D: Feature judgments are biased by 2D location but not position-in-depth. Vision Research, 2016, 127, 49-56.	0.7	11
54	Spatial priming in ecologically relevant reference frames. Attention, Perception, and Psychophysics, 2016, 78, 114-132.	0.7	12

#	Article	IF	CITATIONS
55	Object-location binding: Does spatial location influence high-level judgments of face images?. Journal of Vision, 2016, 16, 409.	0.1	1
56	Visual stability across saccades: Do the number and spatial location of non-targets influence target location processing?. Journal of Vision, 2016, 16, 109.	0.1	0
57	Decoding of visual stimulus location in the human hippocampus. Journal of Vision, 2016, 16, 873.	0.1	0
58	Depth preferences of category-selective regions in human visual cortex. Journal of Vision, 2016, 16, 517.	0.1	0
59	Are 2D and 3D location equally prioritized in object processing?. Journal of Vision, 2016, 16, 288.	0.1	0
60	Feature-location binding, the "spatial congruency bias", and object-based attention. Journal of Vision, 2016, 16, 412.	0.1	0
61	The representation and perception of 3D space: Interactions between 2D location and depth. Visual Cognition, 2015, 23, 832-836.	0.9	1
62	Divided spatial attention and feature-mixing errors. Attention, Perception, and Psychophysics, 2015, 77, 2562-2569.	0.7	33
63	Feature binding and eye movements: Object identity is bound to retinotopic location regardless of stimulus complexity. Journal of Vision, 2015, 15, 1062.	0.1	1
64	Human visual cortex gradually transitions from 2D to 3D spatial representations. Journal of Vision, 2015, 15, 1289.	0.1	0
65	Binding object features to locations: Does the "Spatial Congruency Bias―update with object movement?. Journal of Vision, 2015, 15, 901.	0.1	0
66	Topographic maps of depth in human visual cortex. Journal of Vision, 2015, 15, 988.	0.1	0
67	Feature-Binding Errors After Eye Movements and Shifts of Attention. Psychological Science, 2014, 25, 1067-1078.	1.8	56
68	The influence of object location on identity: A "spatial congruency bias―. Journal of Experimental Psychology: General, 2014, 143, 2262-2278.	1.5	45
69	Complementary attentional components of successful memory encoding. NeuroImage, 2013, 66, 553-562.	2.1	43
70	Retinotopic memory is more precise than spatiotopic memory. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1796-1801.	3.3	52
71	Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location. Cerebral Cortex, 2012, 22, 2794-2810.	1.6	119
72	A Taxonomy of External and Internal Attention. Annual Review of Psychology, 2011, 62, 73-101.	9.9	1,027

#	Article	IF	CITATIONS
73	Attention doesn't slide: spatiotopic updating after eye movements instantiates a new, discrete attentional locus. Attention, Perception, and Psychophysics, 2011, 73, 7-14.	0.7	44
74	Eye Movements Help Link Different Views in Scene-Selective Cortex. Cerebral Cortex, 2011, 21, 2094-2102.	1.6	16
75	Robustness of the retinotopic attentional trace after eye movements. Journal of Vision, 2010, 10, 1-12.	0.1	54
76	Attentional Facilitation throughout Human Visual Cortex Lingers in Retinotopic Coordinates after Eye Movements. Journal of Neuroscience, 2010, 30, 10493-10506.	1.7	68
77	Impaired consciousness in temporal lobe seizures: role of cortical slow activity. Brain, 2010, 133, 3764-3777.	3.7	181
78	Enhanced Visual Motion Perception in Major Depressive Disorder. Journal of Neuroscience, 2009, 29, 9072-9077.	1.7	98
79	Effects of adult aging on utilization of temporal and semantic associations during free and serial recall. Memory and Cognition, 2008, 36, 947-956.	0.9	76
80	The Native Coordinate System of Spatial Attention Is Retinotopic. Journal of Neuroscience, 2008, 28, 10654-10662.	1.7	161
81	Effects of stimulus variability and adult aging on adaptation to time-compressed speech. Journal of the Acoustical Society of America, 2007, 121, 1701-1708.	0.5	49
82	Preservation of Episodic Visual Recognition Memory in Aging. Experimental Aging Research, 2005, 31, 1-13.	0.6	27